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Introduction

Machine learning is a big part of our lives in today's world. We cannot even think of a 

world without machine learning approaches at the moment, and it has already started 

to take a huge part of our daily activities. Websites, mobile applications, self-driving cars, 

home devices, and many things surrounding us use machine learning algorithms. The 

dawn of computing power, especially the graphics processing unit, was accompanied 

by the practical start of the deep learning implementation. Deep learning studies the 

design of deep neural networks. This approach shows impressive efficiency and has 

experienced explosive growth in recent years.

Not surprisingly, the number of tasks to be solved and the need for machine learning 

specialists are constantly growing. At the same time, the number of routine actions that 

developers and data scientists execute to solve machine learning problems is increasing. 

Meanwhile, researchers developed special techniques to save time and automate the 

most common machine learning tasks. These techniques were separated into the 

special area called automated machine learning, or AutoML. This book focuses on the 

automated deep learning (AutoDL) area, which studies the automation of deep learning 

problems. AutoDL considers the issues of creating and designing optimal deep learning 

models. This approach has been rapidly developed in recent years and, in some cases, 

can completely automate the solution of typical tasks.

This book is about implementing AutoDL methods using Microsoft Neural Network 

Intelligence (NNI). NNI is a Python toolkit that contains the most common and 

advanced AutoDL methods: Hyperparameter Optimization (HPO), Neural Architecture 

Search (NAS), and Model Compression. NNI supports the most popular deep learning 

frameworks. This book covers the NNI implementation of various AutoDL techniques 

using the PyTorch and TensorFlow frameworks.

Сhapter 1 focuses on automated deep learning basics and why we should put this 

approach into practice. We will also install NNI and examine the main basic scenarios 

for its use. We will learn how to run simple Hello World Experiments and interact with 

NNI via the command line and WebUI.

In Сhapter 2, we will move on to the study of the most common AutoDL task – 

Hyperparameter Optimization (HPO). We will learn what Hyperparameter Optimization 
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is, what hyperparameters are, and how to organize an NNI HPO experiment using 

PyTorch and TensorFlow. We will also construct three kinds of research that will make 

a historical journey to the origins of deep learning. The first one will help us determine 

the best LeNet model hyperparameters for the MNIST problem. The second research 

integrates a new dropout layer and rectified linear unit (ReLU) activation into the 

original LeNet model. And the third one will show us how we can evolve the LeNet 

model in AlexNet using simple HPO techniques.

In Сhapter 3, we will study NNI's main search algorithms (Tuners), which aim to 

solve HPO tasks. Here, we will consider the practical application and the description of 

the following algorithms: Evolution Tuner, Anneal Tuner, and SMBO Tuners.  

Chapter 3 provides the creation of a custom Tuner and applies it to the classic Shallow 

AutoML problem – building an optimal pipeline using Scikit methods.

In Chapter 4, we will begin to research Neural Architecture Search (NAS). NAS is an 

approach that studies the creation and design of neural networks best suited to solve 

a specific problem. This chapter covers Multi-trial NAS and its main principles. We'll 

discuss the NNI Retiari framework, define Model Spaces and Model Mutators, and set 

up experiments that construct optimal neural networks. Also, this chapter introduces 

various exploration algorithms that explore Multi-trial NAS Model Space: Regularized 

Evolution, TPE Strategy, and RL Strategy. Next, we will build LeNet-based and ResNet-

based Multi-trial NAS experiments to solve the CIFAR-10 problem.

In Chapter 5, we move on to One-shot NAS, one of the latest advances in 

AutoDL. This chapter explains how to construct a Supernet, how to design cell-based 

neural architectures, and perform Efficient Neural Architecture Search (ENAS) and 

Differentiable Architecture Search (DARTS) One-shot NAS algorithms.

In Chapter 6, we will cover the important topic of model pruning. Model pruning 

compresses neural network removing redundant weights or even layers. This technique 

is crucial for lightweight devices when we need to save computing resources. This 

chapter will examine basic One-shot and iterative pruning algorithms.

Chapter 7 will focus on practical recipes for using NNI to organize robust, extensive, 

and big data experiments.

This book explores practical NNI applications of AutoDL methods and describes 

their theory also. Therefore, this book can be helpful for data scientists who want to get 

the idea that underlies various AutoDL techniques and algorithms.

This book requires intermediate deep learning understanding and TensorFlow or 

PyTorch knowledge.

Introduction
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�Source Code Listings
This book has many practical examples and code listings. Source code listings 

accompany each chapter in this book. You can download the source code from the 

following GitHub repository: https://github.com/Apress/automated-deep-learning-

using-neural-network-intelligence.

Introduction
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CHAPTER 1

Introduction to Neural 
Network Intelligence
There was a great burst of deep learning industry in the past few years. Deep learning 

approaches have achieved outstanding results in computer vision, natural language 

processing, robotics, time series forecasting, and optimal control theory. However, 

there is no “silver bullet model” to solve all kinds of problems. Each problem and 

dataset needs a specific model architecture to achieve suitable performance. Machine 

learning models, especially deep learning models, have a lot of tunable parameters 

that can drastically affect the model performance. Those are model design, training 

method, model configuration hyperparameters, etc. The model optimization process 

is performed for each application and even each dataset. Data scientists and machine 

learning experts often spend a lot of time performing manual model optimization. This 

activity can be frustrating because it takes too much time and is usually based on an 

expert’s experience and quasi-random search.

However, recent results in automated machine learning and deep learning meta-

optimization make it possible to automate the optimizing process for a specific task. 

It is also possible to create brand new model architecture from scratch without having 

any experience solving similar problems in the past. The Neural Network Intelligence 

(NNI) toolkit provides the latest state-of-the-art techniques to solve the most challenging 

automated deep learning problems. We’ll start exploring the basic NNI features in this 

chapter.

�What Is Automated Deep Learning?
Before we dive into NNI techniques, let’s talk about automated deep learning, examine 

its use cases, and why you need it. Modern machine learning models can contain 

enormous complexity in their design. Architecture can have thousands of adjustable 

https://doi.org/10.1007/978-1-4842-8149-9_1
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parameters and connections between different neural layers. It is computationally 

impossible to test each architecture hyperparameter combination to select the best 

one. However, modern graphics processing units can already significantly speed up 

the training of machine and especially deep learning models, which means that many 

machine learning processes can be automated. Therefore, a new domain in machine 

learning has appeared called automated machine learning (AutoML). AutoML deals 

with tasks that automate optimal machine learning model production. The area of 

AutoML is very young and is growing rapidly. Machine learning can be divided into 

shallow learning and deep learning. Shallow learning contains classical methods: 

random forest, support vector machine, k-nearest neighbors, etc. In comparison, deep 

learning studies the construction of neural networks based on convolution layers, 

linear layers, pooling, splitting and joining connections, etc. Shallow learning and deep 

learning contain similar automated machine learning techniques, but their application 

differs significantly. Therefore, we can highlight a separate area of AutoML, which deals 

only with deep learning – this area is called automated deep learning (AutoDL). There 

are four main sections for automated deep learning:

•	 Hyperparameter Optimization (HPO)

•	 Neural Architecture Search (NAS)

•	 Feature Engineering

•	 Model Compression

Figure 1-1.  AutoDL sections

Let’s move on and discuss what exactly we need AutoDL for.

Chapter 1  Introduction to Neural Network Intelligence
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�No Free Lunch Theorem
And I want to start with the following fundamental statement, called the No Free 

Lunch (NFL) theorem. No Free Lunch theorem states that

Any two optimization algorithms are equivalent
when their performance is averaged across all possible problems.

—David Wolpert

Let’s elaborate NFL theorem to more functional language. Say we have a set of 

datasets: D1, D2, D3, ..., and the estimated performance of random search algorithm R on 

each dataset Di equals to r:

	 E(R; Di) = r, for any I� (1)

Then for any search algorithm A and any dataset Di with estimation r + q, there is a 

dataset Dj with estimation r - q:

	 E(A; Di) = r + q, E(A; Dj) = r – q� (2)

Statement 2 says that if algorithm A is better than random algorithm R for dataset Di,  

then there is dataset Dj for which algorithm A will be worse than random algorithm R 

and E(A; Di) + E(A; Dj) = E(R; Di) + E(R; Dj). This fact makes all algorithms equivalent if 

we consider them separately from a specific dataset and task. For example, let’s say we 

have an algorithm A for predicting the color of the next box by previous ones with rules 

listed in Table 1-1.

Table 1-1.  Box prediction algorithm

Rule Previous Box Current Box Prediction

1 Black Black White

2 Black White White

3 White Black Black

4 White White Black

Chapter 1  Introduction to Neural Network Intelligence
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And the prediction algorithm A works with 100% accuracy for dataset D1, in which 

two black boxes follow two white boxes and two white boxes follow two black boxes, as 

shown in Figure 1-2.

Figure 1-2.  Performance of prediction algorithm A on dataset D1: 100% accuracy

But let’s examine how algorithm A works on dataset D2, in which white and black 

boxes alternate one after another one by one, as shown in Figure 1-3.

Figure 1-3.  Performance of prediction algorithm A on dataset D2: 0% accuracy

Chapter 1  Introduction to Neural Network Intelligence
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Figure 1-3 demonstrates that algorithm A has 0% accuracy on dataset D2. This 

example illustrates that “there is no optimal algorithm for all datasets” and “there is no 

optimal solution for all cases.” And how does NFL theorem influence deep learning? 

Each deep learning model and each dataset generates a loss function that should be 

minimized. If we have two deep learning models, M1 and M2, then this means that they 

show good results only for certain types of problems and certain types of datasets. You 

cannot expect the same deep learning model to perform similarly on a different dataset, 

much less for a different kind of problem. So if you apply model M1 and model M2 to 

problem P1 on dataset D1, you can expect that model M1 will show good performance 

in this case, and model M2 will demonstrate poor performance. Figure 1-4 illustrates 

this point.

Figure 1-4.  Performance of model M1 and M2 on dataset D1 for problem P1

But we can get the opposite results if the models are applied to a different problem 

and a different dataset as shown in Figure 1-5.

Chapter 1  Introduction to Neural Network Intelligence
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Figure 1-5.  Performance of model M1 and M2 on dataset D2 for problem P2

So, the NFL theorem tells us that we cannot expect a model to perform equally well 

for different cases. The slightest modification in the problem statement or changes 

in the dataset require additional model optimization for the updates. This fact makes 

the AutoDL irreplaceable in preparing an effective production-ready solution. It is 

also worth mentioning that the set of realistic datasets is much smaller than the set 

of all possible datasets, which makes it possible to determine a class of most suitable 

algorithms for solving specific problems. Nevertheless, the NFL theorem remains true 

since selecting the best algorithm for all types of problems is impossible.

�Injecting New Deep Learning Techniques into 
Existing Model
Suppose we have a deep learning model that performs well and shows satisfactory 

results. Later, a new deep learning technique appeared that could significantly improve 

the performance of our model. It could be a special deep learning layer, block, cell, 

or a new activation function. But we do not know how exactly to inject that technique 

into the model architecture. This can be accomplished with AutoDL, which will make 

optimal use of the new technique in the current deep learning model design. Figure 1-6 

illustrates this approach.

Chapter 1  Introduction to Neural Network Intelligence
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Figure 1-6.  Injecting new deep learning technique

This approach will help update the model with the latest advances in deep learning, 

enhancing the model’s performance.

�Adjusting Model to a New Dataset
Let’s say we have a model that solves the problem of energy consumption prediction in 

New York. The model has been trained on the historical dataset and works well. We have 

decided to port this model for energy consumption prediction in Berlin. We expect this 

model to perform for Berlin as well as it performed for New York. But people in another 

country may have a little bit different habits and behaviors that affect the original 

model’s ability to capture patterns correctly. Therefore, it would be good to customize 

the original model for the new Berlin historical dataset. Figure 1-7 demonstrates how the 

existing model could be adapted to a new dataset, updating some of its hyperparameters 

like convolution layer filters, linear layer features, etc.

Chapter 1  Introduction to Neural Network Intelligence
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Figure 1-7.  Adapting model to new dataset

Using AutoDL techniques, you can adapt the model to other datasets.

�Creating a New Model from Scratch
And this is the most exciting part. Let’s say we have a task, and there is no idea about the 

architecture of a neural network that could cope with it. We can borrow some ideas from 

other tasks, do manual investigations, study the statistical properties of the dataset, etc. 

But at the moment, there are Neural Architecture Search (NAS) methods that allow you 

to build a production-ready neural network from scratch, as shown in Figure 1-8.

Figure 1-8.  Neural Architecture Search

Chapter 1  Introduction to Neural Network Intelligence
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And I find this to be a fantastic direction for further research and practical 

applications. Humanity has developed deep learning models and their training based on 

error backpropagation. Neural networks of a particular architecture can reveal the most 

complex dependencies and patterns. So why not take the next step and develop neural 

network design algorithms that will create the optimal neural network architecture for a 

specific task.

�Reinventing the Wheel
Many machine learning experts spend a lot of time developing existing methods to solve 

the problems described earlier. Automated machine learning techniques can save weeks 

or even months of development. Of course, automated deep learning cannot substitute 

for deep learning engineers, and human experience and intuition is the main driver in 

all inventions nowadays. But anyway, AutoDL can significantly decrease the amount of 

custom work needed. Automated deep learning should become a must-have tool for 

solving practical problems that can save significant time.

�Working with Source Code
This book demonstrates many practical examples, accompanied by source code that 

can be downloaded from the following GitHub repository. This book has many practical 

examples and code listings. The chapter’s source code listings accompany each chapter 

in this book. You can download the source code from the following GitHub repository: 

https://github.com/Apress/automated-deep-learning-using-neural-network-

intelligence. Most of the listings in the book are presented in source code. All 

commands in the book are run relative to the root of the source code folder.

�Neural Network Intelligence Installation
Neural Network Intelligence (NNI) is a powerful toolkit to help users solve AutoML. NNI 

manages search processes, visualizes results, and distributes AutoML jobs to different 

machine learning platforms.

Chapter 1  Introduction to Neural Network Intelligence
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�Install
NNI minimal system requirements are: Ubuntu, 18.04; macOS, 11; Windows 10, 21H2 

and Python 3.7.

NNI can be simply installed as follows:

pip install nni

We will be using version 2.7 in this book, so I highly recommend installing version 

2.7 to avoid version differences:

pip install nni==2.7

Let’s test the installation by executing “Hello World” scenario. Run the following 

command (ch1/install/hello_world/config.yml file is contained in the source code):

nnictl create --config ch1/install/hello_world/config.yml

If the installation was successful, you should see the following output:

INFO:  Starting restful server...

INFO:  Successfully started Restful server!

INFO:  Starting experiment...

INFO:  Successfully started experiment!

The experiment id is <EXPERIMENT_ID>

The Web UI urls are: http://127.0.0.1:8080

And you can follow the link http://127.0.0.1:8080 in your browser. Figure 1-9 

demonstrates NNI web user interface that we will cover in the next sections.

Chapter 1  Introduction to Neural Network Intelligence
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Figure 1-9.  NNI WebUI

If everything is ok, then you can stop NNI by executing the following in the 

command line:

nnictl stop

�Docker
If you have any problems with the installation, you can use the docker image that was 

prepared for this book. The Dockerfile in Listing 1-1 is based on the official NNI docker 

image msranni/nni:v2.7 from the official docker repository: https://hub.docker.

com/r/msranni/nni/tags.

Listing 1-1.  NNI Dockerfile for the book.

FROM msranni/nni:v2.7

RUN mkdir /book

ADD . /book

EXPOSE 8080

ENTRYPOINT ["tail", "-f", "/dev/null"]

Chapter 1  Introduction to Neural Network Intelligence
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And you can build an image as

docker build -t autodl_nni_book .

The docker autodl_nni_book image contains all the necessary libraries and 

dependencies to run all the experiments that we will study in this book.

Let’s run the “Hello World” scenario we examined in the previous section using 

docker. We start the docker container:

docker run -t -d -p 8080:8080 autodl_nni_book

then we run NNI in the docker container:

docker exec <container_id> bash -c "nnictl create --config  

/book/ch1/install/hello_world/config.yml"

and after that, you can access NNI WebUI via http://127.0.0.1:8080 in your browser. 

The code repository for this book is in /book directory of the docker image. Therefore, 

in the autodl_nni_book docker image, you can execute all commands that will concern 

NNI as follows:

docker exec <container_id> bash -c "nnictl <nni_command>"

But in any case, the docker’s capabilities are limited. For flexible debugging and 

better interaction with NNI, I strongly recommend that you work with NNI without using 

the docker if possible.

�Search Space, Tuner, and Trial
Let’s take a quick look at one core NNI concept. When we optimize a model, we select 

a particular set of parameters that determine the operation of our model. Search space 

defines this set of parameters. Search space is a key concept in automatic machine 

learning. The search space contains all possible parameters and architectures that are 

hypothetically acceptable for the optimized model.

Although the search space contains a finite number of parameters, nevertheless in 

most cases, it is practically impossible to test all parameters from the search space. The 

search space is too large. Therefore, a special component called Tuner is applied in 

selecting the most appropriate and promising parameters for testing. Tuner estimates 

the results and selects new parameters to check their suitability for model optimization.

Chapter 1  Introduction to Neural Network Intelligence
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Tuner selects a parameter in the search space and transfers it to Trial. Trial is a 

Python script that tests the model with parameters passed by Tuner and returns a metric 

that estimates the model’s performance.

This search process can be depicted as shown in Figure 1-10.

Figure 1-10.  Search space, Tuner, and Trial

After a certain number of trials, we have a sufficient number of results that estimate 

the suitability of each parameter for an optimized model.

�Black-Box Function Optimization
Let’s examine how NNI works by optimizing a black-box function. A black-box function 

is a function that takes input parameters and returns a value, but we have no idea what 

is going on under the function’s hood. Sometimes, we know how a black-box function 

acts and, in some cases, even know its formula. But the nature of this function is so 

complicated that the analytical study is too challenging.

Chapter 1  Introduction to Neural Network Intelligence



14

Figure 1-11.  Black-box function

When we say that we need to optimize the black-box function, it means that we 

need to find such input parameters for which the black-box function outputs the highest 

value. Let’s say that we have a black-box function, which is defined by the code in 

Listing 1-2.

Listing 1-2.  Black-box function. ch1/bbf/black_box_function.py

from math import sin, cos

def black_box_function(x, y, z):

    """

    x in [1, 100] integer

    y in [1, 10] integer

    z in [1, 10000] real

    """

    if y % 2 == 0:

        if x > 50:

            r = (pow(x, sin(z)) - x) * x / 2

        else:

            r = (pow(x, cos(z)) + x) * x

    else:

        r = pow(y, 2 - sin(x) * cos(z))

    return round(r / 100, 2)

Chapter 1  Introduction to Neural Network Intelligence
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Of course, the optimization problem for the function presented in Listing 1-2 can be 

solved analytically, but let’s pretend that we do not know how the function acts inside 

the black box. All we know is that the black-box function returns real value and receives 

the following input parameters:

•	 x positive integer from 1 to 100

•	 y positive integer from 1 to 10

•	 z float from 1 to 10 000

Let’s start solving our problem by defining a search space. Search space is defined in 

JSON format using special directives. We will define the search space using the following 

JSON file.

Listing 1-3.  Search space. ch1/bbf/search_space.json

{

  "x": {"_type": "quniform", "_value": [1, 100, 1]},

  "y": {"_type": "quniform", "_value": [1, 10, 1]},

  "z": {"_type": "quniform", "_value": [1, 10000, 0.01]}

}

quniform directive creates a value list from a to b with step s. So the search space 

defined in Listing 1-3 can be presented the following way:

•	 x in [1, 2, 3, …, 99, 100]

•	 y in [1, 2, 3, …, 9, 10]

•	 z in [1, 1.01, 1.02, …, 9 999.99, 10 000]

Note W e’ll explore how to define search space in more detail in the next chapter.

Now let’s move on to the trial definition.

Listing 1-4.  Trial. ch1/bbf/trial.py

import os

import sys

import nni
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# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch1.bbf.black_box_function import black_box_function

if __name__ == '__main__':

    # parameter from the search space selected by tuner

    p = nni.get_next_parameter()

    x, y, z = p['x'], p['y'], p['z']

    r = black_box_function(x, y, z)

    # returning result to NNI

    nni.report_final_result(r)

Trial receives parameter from NNI using nni.get_next_parameter function and 

returns the metric using nni.report_final_result. Trial takes NNI parameters, passes 

them to the black-box function, and returns the result. Listing 1-4 has to be run by the 

NNI server, so you will get an error if you try to run it.

Note W e’ll explore how to define trial in more detail in the next chapter.

And the last thing left for us to do is to define the configuration of our experiment, 

which will look for the best input parameters for the black-box function.

Listing 1-5.  Experiment configuration. ch1/bbf/config.yml

trialConcurrency: 4

maxTrialNumber: 1000

searchSpaceFile: search_space.json

trialCodeDirectory: .

trialCommand: python3 trial.py

tuner:

  name: Evolution

  classArgs:

      optimize_mode: maximize

trainingService:

  platform: local

Chapter 1  Introduction to Neural Network Intelligence



17

The experiment that we have defined in Listing 1-5 has the following properties:

•	 Four-thread pool for trial execution.

•	 The maximum number of trials is 1000.

•	 Search space is defined in search_space.json.

•	 Trial is executed by running python3 trial.py.

•	 NNI will use a Tuner based on genetic algorithms.

Note W e’ll explore how to define experiment configuration in more detail in the 
next chapter.

Now everything is ready to find the input parameters that maximize the black-box 

function. Let’s run NNI:

nnictl create --config ch1/bbf/config.yml

And you can monitor the experiment process in the web panel: 

http://127.0.0.1:8080.

Note T ypically, testing a deep learning model architecture takes about a few 
minutes, and the NNI is optimized for longer trials. Therefore, the NNI is not well 
suited for high-speed tests, and executing the value of the black-box function 
can take more time than expected. This is due to the data exchange mechanism 
between the main NNI process and its sub-processes. If you want to shorten the 
experiment execution time, change the maxTrialNumber parameter to 100 in 
ch1/bbf/config.yml.

After completing the experiment, you can observe the parameter that returned the 

best metric on the NNI overview page: http://127.0.0.1:8080/oview.
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Figure 1-12.  NNI best trial for black-box function optimization

We see that parameter (x=49, y=2, z=7024.61) is the best result of the experiment. 

The function for this parameter returns 48.02, which is the maximum of all trials. 

Of course, we could have obtained the same result more simply, but now, we are 

introducing the basic capabilities of NNI. In the next chapters, we will see the full 

strength of this tool.

�Web User Interface
Even though NNI allows you to save trial results and later analyze them, NNI provides a 

convenient web user interface for experiment monitoring and analyzing its results. Let’s 

explore the main features of this web panel.

�Overview Page
The overview page http://127.0.0.1:8080/oview contains summary information 

about a running experiment.

The upper left panel contains information about the experiment state (Figure 1-13).
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Figure 1-13.  Experiment state panel

The lower left panel shows the number of trials performed and the running time. The 

maximum number of trials and the maximum time can be edited on the fly (Figure 1-14).

Figure 1-14.  Trial numbers panel

The right panel on the overview page contains a summary of the top trials 

(Figure 1-15).
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Figure 1-15.  Top trials panel

If you just want to run an experiment and get the best test result, then you can 

only deal with the overview page. But for a more detailed analysis of the experiment 

execution, you will need the trials details page.

�Trials Details Page
The trials details page http://127.0.0.1:8080/detail contains a handy visualization of 

the trials performed. The metric panel contains a history of trials and their metrics. This 

panel becomes very useful if you toggle the optimization curve. Then you can observe 

the tuner search progress (Figure 1-16).
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Figure 1-16.  Metric panel

The hyperparameter panel contains one of the most valuable visualizations. It 

displays the relationship between the input parameters and the test metric (Figure 1-17).

Figure 1-17.  Hyperparameter panel

This panel allows hyperparameter data mining to help you better understand the 

nature of the investigated black-box function. We will stay on this moment for a while. 

Select the top 5% trials on the hyperparameter panel (Figure 1-18).

Chapter 1  Introduction to Neural Network Intelligence



22

Figure 1-18.  Hyper-parameter panel. Top 5%

And we can get a lot of insights from Figure 1-18. For all top 5% trials, the following 

is true:

•	 x is an integer less than 51, that is, 50, 49, 48.

•	 y is even.

•	 z probably does not significantly affect the black-box function return 

value, or further research may be needed.

Based on the information we obtained here, we can perform our own simplified 

search that finds the best parameter close to 48.02, which was found during the NNI 

experiment. Let’s examine Listing 1-6.

Listing 1-6.  Black-box function optimization. ch1/bbf/custom_search.py

import random

from ch1.bbf.black_box_function import black_box_function

seed = 0

random.seed(0)

max_ = -100

best_trial = None

for _ in range(100):

    x = random.choice([50, 49, 48])

    y = random.choice([2, 4, 6, 8, 10])
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    z = round(random.uniform(1, 10_000), 2)

    r = black_box_function(x, y, z)

    if r > max_:

        max_ = r

        best_trial = f'(x={x}, y={y}, z={z}) -> {r}'

print(best_trial)

Listing 1-6 returns (x = 50, y = 2, z = 4756.58) -> 47.96, which is pretty 

close to the best value of 48.02 we found in our NNI experiment. The next chapters will 

demonstrate that examining the hyperparameter panel allows you to comprehend many 

key concepts of an effective deep learning model.

At the bottom of the page is the Trial list panel, which lists all trials. You can observe 

each trial’s parameters, logs, and metrics, as shown in Figure 1-19.

Figure 1-19.  Trial list panel

An experiment is usually a rather lengthy process that can take days or even 

weeks. Sometimes, there may be interesting hypotheses to test. For example, it may be 

necessary to run a trial with specific parameters manually. And if you don’t want to wait 

until the end of the experiment, then you can add a custom trial to the queue by clicking 

the “Copy” button in the list of challenges. You can enter your trial parameters in the 

pop-up window and submit a trial. Figure 1-20 demonstrates how you can submit a 

custom trial.
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Figure 1-20.  Customized trial

NNI offers a web panel for experiments that simplifies administration and 

monitoring tasks. We will get back to it more than once in the next chapters.

�NNI Command Line
In addition to the web panel, you can use the command-line interface to manage the 

NNI and monitor its experiments. NNI has the following working directory: ~/nni-

experiments, where all data about experiments is stored.

nnictl create --config <path_to_config>: Starts an experiment and returns 

<experiment_id>. During execution, all information about the running experiment is 

saved in ~/nni-experiments/<experiment_id>.

nnictl stop: Stops running experiment.

nnictl experiment list --all: Returns a list of all created experiments.

nnictl resume <experiment_id>: Resumes a stopped experiment. This command 

is also useful when you want to analyze the results of an already completed experiment.

nnictl view <experiment_id>: Outputs information about experiment.
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nnictl top: Outputs best trials.

For more information about NNI command-line tool, please refer to

nnictl --help

�NNI Experiment Configuration
As we saw earlier, the execution of the experiment is configured through a YAML file 

(ch1/bbf/config.yml). NNI allows you to configure the experiment execution flexibly. 

Table 1-2 lists the main configuration parameters.

Table 1-2.  NNI experiment configuration settings

Field Type Description

experimentName str

Optional

Name of the experiment

searchSpaceFile str

Optional

Path to the JSON file containing search space 

definition

searchSpace YAML

Optional

Field for inline search space definition

For example, search space defined in ch1/

bbf/search_space.json can be set in 

searchSpace field:

searchSpace:

x:

_type: quniform

_value: [1, 100, 1]

y:

_type: quniform

_value: [1, 10, 1]

z:

_type: quniform

_value: [1, 10000, 0.01]

trialCommand str

Required

Command to execute trial. Use python3 on 

Linux and macOS, and use python on Windows

(continued)
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Table 1-2.  (continued)

Field Type Description

trialCodeDirectory str

Optional

Default: "."

Path to trial directory

trialConcurrency int Number of trials to run concurrently

maxExperimentDuration str

Optional

Limits the experiment duration. Experiment 

duration is not limited by default

Format: number + s|m|h|d

Example:

maxExperimentDuration: 5h

maxTrialNumber int

Optional

Limits the number of trials. Number of trials is 

not limited by default

maxTrialDuration str

Optional

Limits the trial duration. Trial duration is not 

limited by default.

Format: number + s|m|h|d

Example:

maxTrialDuration: 30m

debug bool

Optional

Default: False

Enables debug mode

tuner YAML

Optional

Specifies the hyperparameter tuner. Details in 

Chapter 3

assessor YAML

Optional

Specifies the assessor. Details in Chapter 3

advisor YAML

Optional

Specifies the advisor. Details in Chapter 3

trainingService YAML

Optional

Specifies the training service. Details in Chapter 7

sharedStorage YAML

Optional

Specifies the shared storage. Details in Chapter 7
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For more details, please refer to the official documentation: https://nni.

readthedocs.io/en/v2.7/reference/experiment_config.html.

�Embedded NNI
Even though the capabilities of the NNI server are quite broad, the NNI can run in 

embedded mode. It is more convenient to run NNI in Python embedded mode in some 

cases. This need may arise when it is necessary to dynamically create experiments and 

have more control over the experiment execution. We will use NNI in embedded mode 

in some examples in the next chapters.

Listing 1-7 shows an example of the execution of an experiment in embedded mode 

to optimize the black-box function we examined earlier.

Listing 1-7.  Embedded NNI. ch1/bbf/embedded_nni.py

# Loading Packages

from pathlib import Path

from nni.experiment import Experiment

# Defining Search Space

search_space = {

    "x": {"_type": "quniform", "_value": [1, 100, 1]},

    "y": {"_type": "quniform", "_value": [1, 10, 1]},

    "z": {"_type": "quniform", "_value": [1, 10000, 0.01]}

}

# Experiment Configuration

experiment = Experiment('local')

experiment.config.experiment_name = 'Black Box Function Optimization'

experiment.config.trial_concurrency = 4

experiment.config.max_trial_number = 1000

experiment.config.search_space = search_space

experiment.config.trial_command = 'python3 trial.py'

experiment.config.trial_code_directory = Path(__file__).parent

experiment.config.tuner.name = 'Evolution'

experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
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# Starting NNI

http_port = 8080

experiment.start(http_port)

# Event Loop

while True:

    if experiment.get_status() == 'DONE':

        search_data = experiment.export_data()

        search_metrics = experiment.get_job_metrics()

        input("Experiment is finished. Press any key to exit...")

        break

Listing 1-7 contains an event loop that allows you to track the progress of your 

experiment automatically. Therefore, you can programmatically design experiments and 

get the best solutions for a problem.

�Troubleshooting
If you experience any problems or errors launching and using NNI, you can follow this 

mini-guide to determine the issue.

NNI is not starting. In this case, you’ll see the error output message after running 

nnictl start command, and this error message can help you fix the problem.

NNI is starting, but you see an ERROR badge in the overview web panel, as shown 

in Figure 1-21.

Figure 1-21.  NNI. Error badge
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In this case, please check error log file in ~/nni-experiments/<experiment_id>/log/

nnictl_stderr.log.

NNI is starting. Experiment is RUNNING, but Trials have FAILED status, as shown 

in Figure 1-22.

Figure 1-22.  NNI. Failed Trials

In this case, check Trial logs in Trial jobs panel, as shown in Figure 1-23.

Figure 1-23.  NNI. Trial logs

This mini-guide may make it easier to find and fix the NNI problem.

�TensorFlow and PyTorch
This book will apply AutoDL techniques to models implemented with TensorFlow 

or PyTorch. This book assumes that the reader has experience with one of these 

frameworks. Each chapter will provide examples of applying NNI to a model 

implemented in TensorFlow or PyTorch. Examples implemented on PyTorch or 
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TensorFlow will not duplicate each other but will be close to each other. Therefore, if you 

are only a PyTorch user, you will not lose anything if you do not dive into the examples 

with TensorFlow models.

This book will use the following framework versions:

•	 TensorFlow:        2.7.0

•	 PyTorch:           1.9.0

•	 PyTorch Lightning: 1.4.2

•	 Scikit-learn:       0.24.1

In any case, I recommend you to go through all examples because their concepts can 

be easily ported to your favorite deep learning framework.

�Summary
In this chapter, we have explored the NNI basic features. NNI is a very powerful toolkit 

for solving various AutoML tasks. And at the beginning of this chapter, we separately 

investigated the demand to apply AutoML techniques in practice. In the next chapter, we 

will begin exploring the application of the classic Hyperparameter Optimization (HPO) 

approach. We will study how HPO techniques can optimize existing architectures and 

create a new model design.
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CHAPTER 2

Hyperparameter 
Optimization
Almost every deep learning model has a large number of hyperparameters. Choosing 

the proper hyperparameters is one of the most common problems in AutoML. A small 

change in one of the model’s hyperparameters can significantly change its performance. 

Hyperparameter Optimization (HPO) is the first and most effective step in deep learning 

model tuning. Due to its ubiquity, Hyperparameter Optimization is sometimes regarded 

as synonymous with AutoML.

NNI provides a broad and flexible set of HPO tools. This chapter will examine various 

neural network designs and how NNI can be applied to optimize their hyperparameters 

for particular problems.

�What Is Hyperparameter?
Let’s start the chapter by defining what a model hyperparameter is. A deep learning 

model has three types of parameters:

•	 Weights and biases (or model parameters): Parameters of linear 

(or tensor) functions in the neural network’s architecture, which are 

tuned during its training.

•	 Hyperparameters: Initial global variables that are set manually and 

affect the behavior of the functions, the training algorithm, and the 

neural network’s architecture.
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•	 Task parameters: The parameters that the task sets for you. These 

parameters lie in the problem requirements, which need to be 

satisfied and cannot be changed. For example, suppose we solve the 

binary classification problem determining “cat or dog?” by analyzing 

their pictures. In that case, we have a task parameter: 2, which 

indicates the number of output classes. Or, for example, we have the 

air temperature prediction problem for the next three days. Then 

parameter 3 is a task parameter, and it lies in the task requirements 

and cannot be changed in any way.

Let’s look at an example of a Fully Connected Neural Network (or Dense Network) 

with three linear (or dense) layers with activation functions and five-valued input vector 

and scalar output, which can be represented as follows in the TensorFlow framework:

We import necessary packages:

Listing 2-1.  Fully Connected Neural Network. ch2/hpo_definition/fcnn_

model.py

import tensorflow as tf

from tensorflow.keras.layers import Dense

Next, we set task parameters which are task requirements. Our Fully Connected 

Neural Network has to receive five-valued input vector and output a scalar value:

# Task Parameters

inp_dim = 5

out_dim = 1

Since we have three linear (or dense) layers, we can specify the output_dimension 

value for two of them. The third layer has an output_dimension value of 1 because this is 

a task requirement. These values ​​are hyperparameters:

# Hyperparameters

l1_dim = 8

l2_dim = 4
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We initialize the FCNN model:

# Model

model = tf.keras.Sequential(

    [

        Dense(l1_dim, name = 'l1',

              activation = 'sigmoid', input_dim = inp_dim),

        Dense(l2_dim, name = 'l2',

              activation = 'relu'),

        Dense(out_dim, name = 'l3'),

    ]

)

model.build()

And here we have FCNN model parameters:

# Weights and Biases

print(model.summary())

which are presented in Table 2-1.

Table 2-1.  FCNN model weights and biases

Layer Output Shape Param # Explained

l1 (None, 8) 48 5×8 weight matrix + 8 bias vector = 48

l2 (None, 4) 36 8×4 weight matrix + 4 bias vector = 36

l3 (None, 1) 5 4×1 weight matrix + 1 bias vector = 5

Total params: 89

The model shown in Listing 2-1 has 2 hyperparameters and 89 model parameters. 

Hyperparameters usually directly affect the number of model parameters. Indeed, 

in Listing 2-1, the l1_dim and l2_dim hyperparameters set the dimensions of weight 

matrices and bias vectors. Figure 2-1 illustrates the hyperparameter impact on the FCNN 

model architecture and its parameters.
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Figure 2-1.  Hyperparameter impact

We can distinguish four types of hyperparameters:

•	 Layer hyperparameter

•	 Training hyperparameter

•	 Feature hyperparameter

•	 Design hyperparameter

Let’s examine each of these hyperparameter types.
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�Layer Hyperparameter
Almost all layers of a deep learning model imply the presence of initial parameters. For 

example:

•	 Dropout layer: Assumes p (0 < p < 1) parameter, which defines 

dropout probability

•	 MaxPool 2D layer: Assumes pool_size parameter, which defines the 

pooling dimension

•	 Convolutional 2D layer: Assumes kernel_size parameter

We can refer to these hyperparameters as layer hyperparameters.

�Training Hyperparameter
The training process is an integral part of the model architecture. Each model generates 

a multidimensional loss function surface. The model training process tries to find the 

best local minima on the loss function surface. The training process parameters can 

drastically affect trained model performance.

The most common example is learning rate tuning. Most training algorithms 

use gradient descent as the main idea behind model training. The gradient descent 

concept means that a transition vector is calculated for each point on the loss function 

surface. But the length of this vector is determined by the learning rate parameter. Too 

high learning rate parameter can lead to a gradient descent explosion and a complete 

inability to find an acceptable local minima on the loss function surface. At the same 

time, too low learning rate stops the training process at a too high point on the surface 

and does not allow model parameters to reach a lower point. Figure 2-2 demonstrates 

the learning rate problem.
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Figure 2-2.  Learning rate problem

The most common training hyperparameters are

•	 Training epochs number

•	 Learning rate

•	 Batch size

Layer Hyperparameter and Training Hyperparameter Optimization is the most 

common way to tune a model due to the ease of this approach implementation.

�Feature Hyperparameter
Feature hyperparameter affects dataset preprocessing methods. The data structure 

in the input dataset can significantly improve the model’s performance, especially in 

natural language processing (NLP) problems. But transformations of the input dataset 

do not always improve the model’s performance, so you often have to “play” with various 

feature preprocessing techniques to reach the best results.

Let’s examine a dataset that contains movie reviews data. This dataset includes the 

following features:

•	 Feature A: Movie budget (example: 100 000 000$)

•	 Feature B: Review date (example: 2021-05-03)

•	 Feature C: Review text (example: I love good movies, but 

unfortunately, this is not one of them.)
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And we are solving the classical binary classification problem, that is, we have to 

determine whether the review is negative or positive. Then we can apply the following 

preprocessing, which is shown in Figure 2-3.

Figure 2-3.  Dataset preprocessing driven by feature hyperparameters

The dataset preprocessing shown in Figure 2-3 has the following feature 

hyperparameters: use Normalization, use Weekend labeling, and use Stop words removal. 

Let’s describe their meanings:
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•	 use Normalization:

Normalization is a common technique for converting numeric 

data by converting all values to the range from 0 to 1. use 

Normalization hyperparameter manages the application of 

normalization to feature A (budget):

•	 0: Normalization is not applied to feature A.

•	 1: Normalization is applied to feature A and produces A` feature.

•	 use Weekend labeling:

The date does not carry any information for the neural network. 

But an extra datetime labeling might help. For example, reviews 

left on holidays can be positive more often because people are 

in a good mood. Then we can use the weekend labeling method, 

which will label each date if it is a holiday or a weekend. Date 

series can then be converted from 2021-11-05, 2021-11-06, 

2021-11-07, … to 0, 1, 1, ….

•	 0: Weekend labeling is not applied, and feature B is removed from 

the dataset.

•	 1: Weekend labeling is applied, and feature B is converted to 

feature B’.

•	 use Stop words removal:

Removing stop words from text is a common practice that cleans 

the text from noise. Stop words removal often helps speed up 

training and improve the quality of an NLP model.

•	 0: Stop words removal is not applied to feature C.

•	 1: Stop words removal is applied to feature C and produces 

feature C`.

For example, this combination of feature hyperparameters {use Normalization: 0, use 

Weekend labeling: 1, use Stop words removal: 1} will transform original dataset [A, B, C] 

to [A, B’, C’].
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�Design Hyperparameter
Design hyperparameter has a direct impact on the choice of neural network architecture. 

Their values ​​control the choice of neural network layers and connections between them.

Figure 2-4 shows design hyperparameters.

Figure 2-4.  Design hyperparameters

The design hyperparameter search shown in Figure 2-4 has the following design 

hyperparameters: use Dropout, use MaxPool, and Activation function. And they affect the 

model design the following way:

•	 use Dropout:

•	 0: Dropout layer is skipped.

•	 1: Dropout layer is connected.
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•	 use MaxPool:

•	 0: MaxPool layer is skipped.

•	 1: Max Poll layer is connected.

•	 Activation function:

•	 1: Sigmoid activation function is connected.

•	 2: Hyperbolic tangent activation function is connected.

•	 3: Rectified linear activation function is connected.

For example, this combination of design hyperparameters {use Dropout: 1, use 

MaxPool: 0, Activation function: 3} will generate the following sequence of layers in the 

neural network architecture:

•	 Linear layer

•	 Dropout layer

•	 ReLU activation

•	 Linear layer

Design Hyperparameter Optimization is used less often because it is more 

challenging to implement than Layer Hyperparameter or Training Hyperparameter 

Optimization. But design hyperparameter tuning can produce great results. It chooses 

the best combination of layers and connections between them for a particular problem. 

Design Hyperparameter Optimization can be considered as an intermediate approach 

between Hyperparameter Optimization and Neural Architecture Search.

�Search Space
Say we have determined the model’s hyperparameters, which will need to be optimized. 

Next, we must define a search space for each of the hyperparameters. Determining 

the search space requires some experience and intuition. You must understand that 

the larger the search space, the longer the experiment. And it is more difficult to find 

a suitable solution. Therefore, it is pointless to specify a huge number of values in the 

search space. For example, if l1 is a hyperparameter that specifies the dimension of a 

linear layer (tensorflow.keras.layers.Dense(l1) or torch.nn.Linear(out_features 

= l1)), then you don’t need to set the search space for the hyperparameter to  
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[1, 2, 3,..., 999, 1000]. For the hyperparameter l1, values ​​expressing the power 

of two (2n) are more suitable: [4, 8, 16, ..., 256], because the representation size of 

linear layers is relevant only proportionally, not additively (if l1 = 256 performed poorly, 

thus, it is highly likely that l1 = 256 + 8 will show the same result). A reasonable choice 

of hyperparameters can significantly reduce the time of the experiment without losing 

its quality. Before specifying a search space, you can perform manual exploration to 

determine which hyperparameter values ​​have the most impact on model performance.

The search space for the HPO problem is defined by defining a set of possible 

values ​​for each of the hyperparameters. NNI allows the following sampling strategies to 

define hyperparameter search space: choice, randint, uniform, quniform, loguniform, 

qloguniform, normal, qnormal, lognormal, and qlognormal.

�choice
{"_type": "choice", "_value": options}

Choice sampling strategy allows you to manually specify a list of values ​​that a 

hyperparameter can take. It can be a list of numbers and strings. For example:

"hp": {"_type": "choice", "_value": [128, 512, 1024]}

Choice sampling also supports nested search spaces. Nested choice is especially 

useful when dealing with design hyperparameters. Here is the example of nested choice 

sampling:

"layer1":{

  "_type": "choice",

  "_value": [{"_name": "Empty"},

    {

      "_name": "Conv", "kernel_size":

      {"_type": "choice", "_value": [1, 2, 3, 5]}

    },

    {

      "_name": "Max_pool", "pooling_size":

      {"_type": "choice", "_value": [2, 3, 5]}

    },
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    {

      "_name": "Avg_pool", "pooling_size":

      {"_type": "choice", "_value": [2, 3, 5]}

    }

  ]

}

�randomint
{"_type": "randint", "_value": [lower, upper]}

Chooses random integer from lower (inclusive) to upper (exclusive).

�uniform
{"_type": "uniform", "_value": [low, high]}

Chooses random value according to uniform distribution on [low, high].

�quniform
{"_type": "quniform", "_value": [low, high, q]}

Acts like uniform sampling but with q discretization that can be expressed as 

clip(round(uniform(low, high) / q) * q, low, high). For example, for _value 

specified as [1, 11, 2.5], possible values are [1, 2.5, 5, 7.5, 10, 11].

�loguniform
{"_type": "loguniform", "_value": [low, high]}

Chooses random value according to loguniform distribution on [low, high] that can be 

expressed as np.exp(uniform(np.log(low), np.log(high))).
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�qloguniform
{"_type": "qloguniform", "_value": [low, high, q]}

Acts like loguniform sampling but with q discretization that can be expressed as 

clip(round(loguniform(low, high) / q) * q, low, high).

�normal
{"_type": "normal", "_value": [mu, sigma]}

Chooses random value according to normal distribution with μ = mu and σ = sigma.

�qnormal
{"_type": "qnormal", "_value": [mu, sigma, q]}

Acts like normal sampling but with q discretization that can be expressed as 

round(normal(mu, sigma) / q) * q.

�lognormal
{"_type": "lognormal", "_value": [mu, sigma]}

Chooses random value according to lognormal distribution with μ = mu and σ = sigma 

that can be expressed as np.exp(normal(mu, sigma)).

�qlognormal
{"_type": "qlognormal", "_value": [mu, sigma, q]}

Acts like lognormal sampling but with q discretization that can be expressed as 

round(exp(normal(mu, sigma)) / q) * q.

The implementation of sampling strategies is in nni.parameter expressions. You 

can explore search space sampling strategies manually, as shown in Listing 2-2.
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Listing 2-2.  quniform sampling strategy. ch2/search_space/quniform.py

import nni

from numpy.random.mtrand import RandomState

import matplotlib.pyplot as plt

We generate 20 samples using quniform strategy:

space = [

    nni.quniform(0, 100, 5, RandomState(seed))

    for seed in range(20)

]

Visualize generated samples:

plt.figure(figsize = (5, 1))

plt.title('quniform')

plt.plot(space, len(space) * [0], "x")

plt.yticks([])

plt.show()

And after, you can observe generated samples using quniform method in Figure 2-5.

Figure 2-5.  quniform samples

Let’s examine an example of a JSON search space definition.

Listing 2-3.  Search space. ch2/search_space/search_space.json

{

  "dropout_rate":

  { "_type": "uniform", "_value": [0.1, 0.5]},

  "conv_size":

  {"_type": "choice", "_value": [2, 3, 5, 7]},
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  "layer1_hidden_size":

  {"_type": "choice", "_value": [128, 512, 1024]},

  "layer2_hidden_size":

  {"_type": "choice", "_value": [16, 32, 64]},

  "activation_function":

  {"_type": "choice", "_value": ["tanh", "sigmoid", "relu"]},

  "training_batch_size":

  {"_type": "choice", "_value": [100, 250, 500]},

  "training_learning_rate":

  {"_type": "uniform", "_value": [0.0001, 0.1]}

}

Listing 2-3 demonstrates a typical search space for deep learning model:

•	 dropout_rate: Layer hyperparameter that defines the p parameter in 

dropout layer. dropout_rate can take any value from 0.1 to 0.5.

•	 conv_size: Layer hyperparameter that defines the kernel size of 

convolutional layer. conv_size can take any value from the list: 2, 

3, 5, 7.

•	 layer1_hidden_size: Layer hyperparameter that defines the output 

dimension of the first linear layer. layer1_hidden_size can take any 

value from the list: 128, 512, 1024.

•	 layer2_hidden_size: Layer hyperparameter that defines the output 

dimension of the second linear layer. layer2_hidden_size can take 

any value from the list: 16, 32, 64.

•	 activation_function: Design hyperparameter that defines output 

activation function. activation_function can take any value from 

the list: tanh, sigmoid, relu.

•	 training_batch_size: Training hyperparameter that defines batch 

size that will be used during training. training_batch_size can take 

any value from the list: 100, 250, 500.

•	 training_learning_rate: Training hyperparameter that defines 

learning rate. training_learning_rate can take any value from 

0.0001 to 0.1.
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�Tuners
After defining the search space, we need to define a tuner that will explore the search 

space and select trial hyperparameter combinations based on the existing results.

The tuner is set as follows in the configuration file:

tuner:

  name: <Tuner_Name>

  classArgs:

      optimize_mode: minimize

      arg1: val1

      arg2: val2

Each tuner has its own set of parameters. The only common parameter for all 

tuners is optimize_mode, which marks the direction of optimization of the metric that 

characterizes the model’s performance: minimize, maximize.

Table 2-2 provides the list of tuners available in NNI v2.7.

Table 2-2.  Search Tuners

Configuration Id Name

SMAC Sequential Model-Based Optimization

TPE Tree-structured Parzen Estimator

Random Random Search

Anneal Annealing Search Algorithm

Evolution Genetic Algorithm Search

BatchTuner Batch Tuner

GridSearch Grid Search

NetworkMorphism Network Morphism

MetisTuner Metis Tuner

GPTuner Gaussian Process (GP) Tuner

PBTTuner Population-Based Training Tuner
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We will study tuning algorithms in detail in Chapter 3. In this chapter, we will 

consider only Random Search Tuner and Grid Search Tuner.

�Random Search Tuner
The Random Search Tuner is the most straightforward approach to choosing 

a combination of hyperparameters. As the name implies, the combination of 

hyperparameters is chosen absolutely randomly. Despite the simplicity of this approach, 

it can sometimes give very good results.

Random Search Tuner is set as

tuner:

  name: Random

Figure 2-6 illustrates the Random Search Tuner in action.

Figure 2-6.  Random Search Tuner

In some cases, Random Search Tuner is well suited for exploring the search 

space when you need to extract information about hyperparameters’ impact on 

model performance. After a random search space exploration, you can redefine 

hyperparameter search space and select another tuner.
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�Grid Search Tuner
Grid Search Tuner performs an exhaustive search, that is, Grid Search Tuner will search 

all the possible combinations from the search space. Grid Search Tuner is well suited for 

small search spaces.

Grid Search Tuner is set as

tuner:

  name: GridSearch

Figure 2-7 illustrates the Grid Search Tuner in action.

Figure 2-7.  Grid Search Tuner

Grid Search Tuner accepts only search space variables that are generated with 

choice, quniform, and randint functions.

�Organizing Experiment
And so, we are all set to begin our first explorations. Let’s look at the file organization 

pattern we’ll be using in this book. I also recommend that you follow the same approach.

These simple rules will help you avoid unnecessary errors when running an 

experiment:

•	 Use a separate directory for each experiment.

•	 Specify the current directory as trial code directory in the experiment 

configuration.
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•	 Keep the model class and training/testing methods in a separate file.

•	 Add root code folder to the system path in trial file.

•	 Do not mix model and trial files.

Let’s look at a dummy experiment that follows these rules ch2/experiment_pattern. 

Listing 2-4 provides the experiment configuration file.

The configuration file marks the current directory as the working directory: 

trialCodeDirectory: .

Listing 2-4.  Experiment configuration. ch2/experiment_pattern/config.yml

trialConcurrency: 1

searchSpaceFile: search_space.json

trialCodeDirectory: .

trialCommand: python3 trial.py

tuner:

  name: GridSearch

trainingService:

  platform: local

Model class and training/testing methods are in a separate file shown in Listing 2-5.

Listing 2-5.  DummyModel class. ch2/experiment_pattern/model.py

from random import random

class DummyModel:

    def __init__(self, x, y) -> None:

        super().__init__()

        self.x = x

        self.y = y

    def train(self):

        # Training here

        ...

    def test(self):

        # Test results

        return round(self.x + self.y + random() / 10, 2)
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Table 2-3.  NNI API

Method Description

nni.get_next_parameter() Required method that receives trial parameters 

from NNI Tuner as Dict object

nni.report_intermediate_result(m) Optional method that sends intermediate results to 

NNI Tuner

nni.report_final_result(m) Required method that sends final metrics that 

represents model’s performance

The trial script receives parameters from the NNI tuner, initializes the model, trains 

it, and tests its performance. The trial script interacts with NNI using the following API 

methods shown in Table 2-3.

Let’s look at the trial script pattern in Listing 2-6.

We import necessary modules:

Listing 2-6.  Trial script pattern. ch2/experiment_pattern/trial.py

import os

import sys

import nni

And here, we add the root directory of the code to the system path. This is done 

because NNI has no idea about the structure of our code and the location of modules.

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

Now, we can import the classes we need from our code structure:

from ch2.experiment_pattern.model import DummyModel
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Trial initiates the model, trains it, measures its performance, and returns the result to 

NNI Tuner:

def trial(hparams):

    """

    Trial Script:

      - Initiate Model

      - Train

      - Test

      - Report

    """

    model = DummyModel(**hparams)

    model.train()

    accuracy = model.test()

    # send final accuracy to NNI

    nni.report_final_result(accuracy)

And here is the entry point to the trial script:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'x': 1,

        'y': 1,

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

You can run trial script ch2/experiment_pattern/trial.py in stand-alone mode. 

It means you can run this script without getting any errors. The nni.get_next_

parameter() method will return an empty dict that you can merge with your trial 

parameters. This is convenient if you want to test trial execution.
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Experiment file structure pattern can be depicted as it is shown in Figure 2-8.

Figure 2-8.  Experiment file structure

Fine! We’ve defined different hyperparameter types, examined how to define search 

spaces, studied simple tuners, and represented a pattern for creating experiments. We 

are now ready to move on to real research. The following sections will examine how 

HPO methods optimize the model for the specific problem and help develop a new 

model design.

�Optimizing LeNet for MNIST Problem
Libraries: TensorFlow (Keras API), PyTorch

MNIST Classifier problem is a common problem to test various machine learning 

approaches. Convolutional neural networks have made a breakthrough in image 

recognition, so we also use the MNIST dataset for diving into the HPO area. The MNIST 

database contains images of handwritten digits. It is split into two sets: a training set of 

60,000 samples and a test set of 10,000 examples. Figure 2-9 displays several samples 

from the MNIST dataset.
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Figure 2-9.  MNIST database

MNIST dataset is a set of 28×28 grayscale images. Therefore, each dataset object is a 

(28, 28, 1) tensor. Let’s examine several samples of this dataset.

Listing 2-7.  MNIST dataset samples. ch2/lenet_hpo/mnist_dataset.py

import tensorflow_datasets as tfds

ds, info = tfds.load('mnist', split = 'train', with_info = True)

fig = tfds.show_examples(ds, info)

fig.show()

Listing 2-7 displays the image in Figure 2-10.
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Figure 2-10.  MNIST samples

This may seem like a very simple task, but it is not. Recall how often you could 

not understand the number written down by another person’s hand. Handwritten 

digit recognition was one of the first fundamental problems of pattern recognition. 

LeNet-5 is one of the earliest neural networks used for recognizing handwritten and 

machine-printed characters. The main reason behind the popularity of this model was 

its straightforward architecture. It is a multilayer convolution neural network for image 

classification. Abstract LeNet model design is depicted in Figure 2-11.

Figure 2-11.  LeNet architecture
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Our goal is to optimize the LeNet model to the handwritten digit recognition 

problem. The easiest thing is to start Layer Hyperparameter Optimization. Let’s just 

count the number of layer hyperparameters in the LeNet model:

•	 Conv2D layer: Five basic hyperparameters (out_channels,  

kernel_size, stride, padding, dilation)

•	 MaxPool2D layer: Two basic hyperparameters  

(kernel_size, stride)

•	 Linear layer: Two basic hyperparameters (out_features, use_bias)

LeNet contains two Conv2D layers, two MaxPool2D layers, and two linear layers. 

Thus, we have 2×5 + 2×2 + 2×2 = 14 layer hyperparameters in LeNet model. Let’s assume 

that for each hyperparameter, we will have a set of possible values ​​that will consist of 

only two elements, although, of course, many hyperparameters require more values ​​for 

the flexibility of the experiment. But even this binary search space contains 214 = 16 384 

elements. And these are just the most primitive layer hyperparameters for one of the 

simplest deep learning models. As the complexity of the model increases, the number of 

possible hyperparameters in it grows exponentially. Even the most advanced tuner can 

take a very long time to explore this search space. Therefore, we need some experience 

and intuition, which will allow us to select the critical hyperparameter range for each 

model without increasing the search space too much.

Let’s consider only the following layer hyperparameters:

•	 Conv2D layer 1: filter_size_1, kernel_size_1

•	 Conv2D layer 2: filter_size_2, kernel_size_2

•	 Linear layer: out_features

In order to reduce the size of the search space, we set

•	 filter_size_2 = 2 * filter_size_1

•	 kernel_size_1 = kernel_size_2

Then, we will focus on only three hyperparameters for LeNet model:

•	 filter_size

•	 kernel_size

•	 out_features
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Usually, the best values ​​for the filter_size of the convolutional layer are presented 

as 2n. Therefore, we will choose the following ones for the search space: 8, 16, 32. The 

kernel_size values ​​are usually chosen in a set of 2n + 1. And the larger the image is, 

the larger kernel_size value ​​​​should be chosen. The samples of the MNIST dataset are 

28×28 images. These are pretty small images, so we shouldn’t choose large kernel_size 

values: 2, 3, 5. The best values ​​for l1_size are powers of two, as for filter_size. The 

linear layer is applied to the tensor after the flatten layer, which means that we have to 

consider the dimension of the tensor that the previous layers will produce. In the case 

of the MNIST problem, we will focus on the following l1_size values: 32, 64, 128. For 

MaxPool2D layer we will set the lowest possible value of pool_size, which is 2, and set 

sigmoid as the activation function. Yes! That’s the function that has been used for quite a 

long time as an activation function for most pattern recognition problems. We will return 

to the problem of choosing an activation function in the next section.

We will use classic batch neural network training with Adam optimizer. So let’s now 

look at training hyperparameters. I suggest starting the study by selecting the simplest 

hyperparameters: batch_size and learning rate. The best parameters for batch_

size are expressed as 2n and learning_rate as 10-n. For this case, we will choose the 

following: 256, 512, 1024 for batch_size and 0.01, 0.001, 0.0001 for learning_rate.

Now let’s convert the hyperparameter constraints we made earlier into NNI search 

space. Listing 2-8 defines the search space for LeNet hyperparameter optimization 

search space.

Listing 2-8.  LeNet HPO search space. ch2/lenet_hpo/search_space.json

{

  "filter_size": {

    "_type": "choice", "_value": [8, 16, 32]},

  "kernel_size": {

    "_type": "choice", "_value": [2, 3, 5]},

  "l1_size": {

    "_type": "choice", "_value": [32, 64, 128]},

  "batch_size": {

    "_type": "choice", "_value": [256, 512, 1024]},

  "learning_rate": {

    "_type": "choice", "_value": [0.01, 0.001, 0.0001]}

}
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Fine! In the next step, we will create TensorFlow and PyTorch implementations of the 

LeNet model considering the HPO problem.

�TensorFlow LeNet Implementation
In this section, we will study the LeNet model’s implementation using TensorFlow 

(Keras API). Listing 2-9 demonstrates the implementation of the TensorFlow LeNet 

model for the hyperparameter optimization.

We import necessary modules:

Listing 2-9.  LeNet. TensorFlow implementation. ch2/lenet_hpo/tf_lenet_

model.py

from tensorflow.keras import Model

from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPool2D

from tensorflow.keras.optimizers import Adam

from ch2.utils.datasets import mnist_dataset

from ch2.utils.tf_utils import TfNniIntermediateResult

Next, we define the LeNet model with three layer hyperparameters:

class TfLeNetModel(Model):

    def __init__(self, filter_size, kernel_size, l1_size):

        super().__init__()

First convolutional stack:

        self.conv1 = Conv2D(

            filters = filter_size,

            kernel_size = kernel_size,

            activation = 'sigmoid'

        )

        self.pool1 = MaxPool2D(pool_size = 2)

Second convolutional stack:

        self.conv2 = Conv2D(

            filters = filter_size * 2,

            kernel_size = kernel_size,
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            activation = 'sigmoid'

        )

        self.pool2 = MaxPool2D(pool_size = 2)

Dense stack:

        self.flatten = Flatten()

        self.fc1 = Dense(

            units = l1_size,

            activation = 'sigmoid'

        )

        self.fc2 = Dense(

            units = 10,

            activation = 'softmax'

        )

LeNet is a straightforward model which passes calculation results from one layer to 

another:

    def call(self, x, **kwargs):

        x = self.conv1(x)

        x = self.pool1(x)

        x = self.conv2(x)

        x = self.pool2(x)

        x = self.flatten(x)

        x = self.fc1(x)

        return self.fc2(x)

The training method uses two training hyperparameters: batch_size and learning 

rate. We use Adam optimizer with categorical cross-entropy loss function:

    def train(self, learning_rate, batch_size):

        self.compile(

            optimizer = Adam(learning_rate = learning_rate),

            loss = 'sparse_categorical_crossentropy',

            metrics = ['accuracy']

        )

        (x_train, y_train), _ = mnist_dataset()
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Next, we initialize a callback that sends intermediate results to NNI:

        intermediate_cb = TfNniIntermediateResult('accuracy')

Performing classic batch training with ten epochs:

        self.fit(

            x_train,

            y_train,

            batch_size = batch_size,

            epochs = 10,

            verbose = 0,

            callbacks = [intermediate_cb]

        )

And the last method we need to define is model testing. We load the test MNIST 

dataset and perform the classification by measuring its accuracy:

    def test(self):

        """Testing Trained Model Performance"""

        (_, _), (x_test, y_test) = mnist_dataset()

        loss, accuracy = self.evaluate(x_test, y_test, verbose = 0)

        return accuracy

Well, since the implementation of TensorFlow LeNet model is ready, we can 

implement the NNI trial script using Listing 2-10.

We import necessary modules and pass code root directory to system path:

Listing 2-10.  NNI trial script with TensorFlow LeNet implementation. ch2/lenet_

hpo/tf_trial.py

import os

import sys

import nni

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_hpo.tf_lenet_model import TfLeNetModel
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The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

    model = TfLeNetModel(

        filter_size = hparams['filter_size'],

        kernel_size = hparams['kernel_size'],

        l1_size = hparams['l1_size']

    )

    model.train(

        batch_size = hparams['batch_size'],

        learning_rate = hparams['learning_rate']

    )

    accuracy = model.test()

    # send final accuracy to NNI

    nni.report_final_result(accuracy)

And finally, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'filter_size':   32,

        'kernel_size':   3,

        'l1_size':       64,

        'batch_size':    512,

        'learning_rate': 1e-3,

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand-alone mode, so you can run a 

ch2/lenet_hpo/tf_trial.py to test its execution with custom parameters.
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�PyTorch LeNet Implementation
In this section, we will study the LeNet model’s implementation using 

PyTorch. Listing 2-11 demonstrates the implementation of the PyTorch LeNet model 

for the hyperparameter optimization.

We import necessary modules:

Listing 2-11.  LeNet. PyTorch implementation. ch2/lenet_hpo/pt_lenet_

model.py

import numpy as np

import nni

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from sklearn.metrics import accuracy_score

from ch2.utils.datasets import mnist_dataset

Next, we define the LeNet model with three layer hyperparameters:

class PtLeNetModel(nn.Module):

    def __init__(self, filter_size, kernel_size, l1_size):

        super(PtLeNetModel, self).__init__()

This implementation will use lazy layer initialization, so we explicitly save the l1_

size hyperparameter:

        # Saving l1_size HyperParameter

        self.l1_size = l1_size

After that, we initialize convolutional layers:

        self.conv1 = nn.Conv2d(

            in_channels = 1,

            out_channels = filter_size,

            kernel_size = kernel_size

        )
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        self.conv2 = nn.Conv2d(

            in_channels = filter_size,

            out_channels = filter_size * 2,

            kernel_size = kernel_size

        )

We don’t initialize the first linear layer, but we use lazy initialization. To initialize a 

linear layer, we must specify an in_features value. But this is not so simple. We need 

to know the dimension of the tensor, which the previous layers will produce. To do this, 

sometimes, you have to do complex calculations. It is easier to calculate the dimension 

of this tensor at the first call and at this moment initialize the linear layer.

        # Lazy fc1 Layer Initialization

        self.fc1__in_features = 0

        self._fc1 = None

        self.fc2 = nn.Linear(l1_size, 10)

Lazy layer initialization:

    @property

    def fc1(self):

        if self._fc1 is None:

            self._fc1 = nn.Linear(

                self.fc1__in_features,

                self.l1_size

            )

        return self._fc1

LeNet is a straightforward model which passes calculation results from one layer to 

another:

    def forward(self, x):

        x = torch.sigmoid(self.conv1(x))

        x = F.max_pool2d(x, 2, 2)

        x = torch.sigmoid(self.conv2(x))

        x = F.max_pool2d(x, 2, 2)
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        # Flatting all dimensions but batch-dimension

        if not self.fc1__in_features:

            self.fc1__in_features = np.prod(x.shape[1:])

        x = x.view(-1, self.fc1__in_features)

        # FC1 initializes lazy

        x = torch.sigmoid(self.fc1(x))

        x = self.fc2(x)

        return F.log_softmax(x, dim = 1)

The training method uses two training hyperparameters: batch_size and 

learning rate:

    def train_model(self, learning_rate, batch_size):

We prepare training dataset:

        (x, y), _ = mnist_dataset()

        x = torch.from_numpy(x).float()

        y = torch.from_numpy(y).long()

        # Permute dimensions for PyTorch Convolutions

        x = torch.permute(x, (0, 3, 1, 2))

        dataset_size = x.shape[0]

Initialize Adam optimizer:

        optimizer = optim.Adam(

            self.parameters(),

            lr = learning_rate

        )

Vanilla PyTorch does not have built-in batch training. Therefore, we manually split 

the dataset into batches and perform epoch loop and batch loop:

        self.train()

        for epoch in range(1, 10 + 1):

            # Random permutations for batch training

            permutation = torch.randperm(dataset_size)

            for bi in range(1, dataset_size, batch_size):
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                # Creating New Batch

                indices = permutation[bi:bi + batch_size]

                batch_x, batch_y = x[indices], y[indices]

Model parameter optimization using cross-entropy loss function:

                optimizer.zero_grad()

                output = self(batch_x)

                loss = F.cross_entropy(output, batch_y)

                loss.backward()

                optimizer.step()

At the end of each epoch, we calculate the model accuracy and return it to NNI as an 

intermediate result:

            output = self(x)

            predict = output.argmax(dim = 1, keepdim = True)

            accuracy = round(accuracy_score(predict, y), 4)

            print(F'Epoch: {epoch}| Accuracy: {accuracy}')

            # report intermediate result

            nni.report_intermediate_result(accuracy)

And the last method we need to define is model testing. We load the test MNIST 

dataset and perform the classification by measuring its accuracy:

    def test_model(self):

        self.eval()

        # Preparing Test Dataset

        _, (x, y) = mnist_dataset()

        x = torch.from_numpy(x).float()

        y = torch.from_numpy(y).long()

        x = torch.permute(x, (0, 3, 1, 2))

        with torch.no_grad():

            output = self(x)

            predict = output.argmax(dim = 1, keepdim = True)

            accuracy = round(accuracy_score(predict, y), 4)

        return accuracy
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Well, since the implementation of PyTorch LeNet model is ready, we can implement 

the NNI trial script using Listing 2-12.

We import necessary modules and pass code root directory to system path:

Listing 2-12.  NNI trial script with TensorFlow LeNet implementation. ch2/lenet_

hpo/pt_trial.py

import os

import sys

import nni

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_hpo.pt_lenet_model import PtLeNetModel

The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

    model = PtLeNetModel(

        filter_size = hparams['filter_size'],

        kernel_size = hparams['kernel_size'],

        l1_size = hparams['l1_size']

    )

    model.train_model(

        batch_size = hparams['batch_size'],

        learning_rate = hparams['learning_rate']

    )

    accuracy = model.test_model()

    nni.report_final_result(accuracy)

And finally, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'filter_size':   32,

        'kernel_size':   3,  #5,
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        'l1_size':       64,  #1024,

        'batch_size':    512,  #32,

        'learning_rate': 1e-2,  #1e-4,

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand-alone mode, so you can run a 

ch2/lenet_hpo/pt_trial.py to test its execution with custom parameters.

�Performing LeNet HPO Experiment
And so now, we are all set for our first HPO study. Any real-world experiment can take 

several hours to several weeks, which is natural because each trial creates a unique 

model and training method. And the process of training can take quite a long time, 

depending on a model design and dataset. Some of the experiments in this book took 

quite a long time. Therefore, you can skip a complete experiment run or limit the 

number of trials with the maxTrialNumber setting. Keep in mind that if you run a limited 

experiment, your results may differ significantly from those presented in the book. For 

each experiment, I will give the time it took to complete it on a specific machine. We 

need to configure the NNI experiment and run it. Listing 2-13 contains the configuration 

for the LeNet HPO Experiment.

Listing 2-13.  LeNet HPO Experiment configuration. ch2/lenet_hpo/config.yml

trialConcurrency: 4

searchSpaceFile: search_space.json

trialCodeDirectory: .

Uncomment PyTorch trial line to run the experiment using PyTorch implementation:

trialCommand: python3 tf_trial.py

#trialCommand: python3 pt_trial.py
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The search space contains 35 = 243 elements. This is a small search space, and we 

can use the Grid Search Tuner here:

tuner:

  name: GridSearch

trainingService:

  platform: local

The experiment can be run as follows:

nnictl create --config ch2/lenet_hpo/config.yml

Note  Duration ~ 2 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

The experiment returned the following best trial hyperparameters:

•	 learning_rate:        0.001

•	 batch_size:             256

•	 l1_size:                 64

•	 kernel_size:               5

•	 filter_size:             32

The best trial showed a 0.9885 result. And this is an acceptable outcome. We can 

assume that LeNet supplied by best hyperparameters recognizes handwritten numbers 

with 98.85% accuracy on test dataset.

In Figure 2-12, we can observe the top 1% of the top trials in the 

hyperparameters panel.
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Figure 2-12.  Hyperparameter panel of LeNet HPO top 1% trials

Figure 2-12 demonstrates that all the best results have kernel_size = 5. Otherwise, 

the best results have no dependencies among its hyperparameters.

After completing a study, I like to visualize the results. We already have accuracy 

metric. But it will still be interesting to glance at the images that the LeNet model could 

not classify correctly. Perhaps the achieved accuracy of 98.85% is the best possible 

accuracy? Maybe the test dataset contains samples that cannot be correctly classified? 

Listing 2-14 displays the first nine failed predictions.

We import necessary modules:

Listing 2-14.  LeNet failed predictions. ch2/lenet_hpo/display_mnist_failed_

predictions.py

from math import floor

import numpy as np

from ch2.lenet_hpo.tf_lenet_model import TfLeNetModel

import matplotlib.pyplot as plt

import tensorflow as tf

from ch2.utils.datasets import mnist_dataset

LeNet model is initialized using best layer hyperparameters:

# Best Hyperparameters

hparams = {

    "learning_rate": 0.001,

    "batch_size":    256,
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    "l1_size":       64,

    "kernel_size":   5,

    "filter_size":   32

}

# Making this script Reproducible

tf.random.set_seed(1)

# Initializing LeNet Model

model = TfLeNetModel(

    filter_size = hparams['filter_size'],

    kernel_size = hparams['kernel_size'],

    l1_size = hparams['l1_size']

)

And after that, we train the model using the best training hyperparameters:

# Model Training

model.train(

    batch_size = hparams['batch_size'],

    learning_rate = hparams['learning_rate']

)

Trained model makes its predictions on test MNIST dataset:

# MNIST Dataset

(_, _), (x_test, y_test) = mnist_dataset()

# Predictions

output = model(x_test)

y_pred = tf.argmax(output, 1)

Collecting the first nine failed predictions:

number_of_fails_left = 9

fails = []

for i in range(len(x_test)):

    if number_of_fails_left == 0:

        break
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    if y_pred[i] != y_test[i]:

        fails.append((x_test[i], (y_pred[i], y_test[i])))

        number_of_fails_left -= 1

Displaying failed predictions:

fig, axs = plt.subplots(3, 3)

for i in range(len(fails)):

    sample, (pred, actual) = fails[i]

    img = np.array(sample, dtype = 'float')

    img = img * 255

    pixels = img.reshape((28, 28))

    ax = axs[floor(i / 3), i % 3]

    ax.set_title(f'#{i+1}: {actual} ({pred})')

    ax.set_xticks([])

    ax.set_yticks([])

    ax.imshow(pixels, cmap = 'gray')

plt.show()

Figure 2-13 displays LeNet failed predictions. To be honest, the samples #1, #3, #4, 

#5, #6, and #8 are really difficult to classify. I don’t think that a reader would recognize 

the number 2 in sample #4. Therefore, we do not need to demand 100% accuracy from 

our model. But still, I think there is room for improvement.
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Figure 2-13.  LeNet failed predictions

Congratulations! We have completed our first real-world study. We defined the 

problem, chose the model frame (LeNet), expressed the search space, made model 

implementations, and found the best hyperparameters for the problem. But this is only 

the beginning. Let’s continue the research and see what other exciting results we can 

achieve.

�Upgrading LeNet with ReLU and Dropout
Libraries: TensorFlow (Keras API), PyTorch

Experienced data scientists may have the question: Hey?! Why didn’t we use the 

dropout layer and rectified linear unit (ReLU) as the activation function for LeNet 

model in the previous section? Because the original LeNet model did not use the ReLU 

activation. And the dropout technique was first introduced in 2012, 22 years after 

creating the LeNet architecture. One of the main problems with the LeNet concept was 

that it used sigmoid as an activation function. The sigmoid activation function led to 

slower training and a vanishing gradient problem. The dropout technique is also one of 

the most popular regularization methods. Nowadays, we cannot imagine a successful 

pattern recognition model that does not use ReLU and dropout layers. Let’s pretend 

that we have never heard anything about ReLU and dropout, and someone advises us 
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to inject these techniques into a LeNet model to improve its performance. We can do 

research using HPO that will help us find the best architecture.

Let’s introduce an activation design hyperparameter responsible for choosing the 

activation function. To simplify the problem, we will use a one-for-all policy. This means 

that if the activation hyperparameter has a sigmoid value, then the LeNet model will 

have a sigmoid function for all activations. The same is true if activation has a relu 

value. Figure 2-14 presents activation hyperparameter.

Figure 2-14.  Activation design hyperparameter

Typically, a dropout layer is inserted between linear layers. But we initially do not 

know whether this technique would be effective, so we have to make possible two 

variants of LeNet architecture: with dropout layer and without dropout layer. To do this, 

we use the use_dropout design hyperparameter. If use_dropout is 0, then the LeNet 

model does not use the dropout layer, and if use_dropout is 1, then the LeNet model 

uses the dropout layer. At the same time, the dropout layer will be tested using three 

different p (dropout rate) values: 0.3, 0.5, and 0.7. Figure 2-15 presents use_dropout 

design hyperparameter.
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Figure 2-15.  Dropout design hyperparameter

Each model design works well with specific layer hyperparameters. Therefore, we 

also need to include layer hyperparameters in the search space. In this experiment, we 

will use the same hyperparameters we used in the previous section. But we will choose 

slightly different values ​​for them:

•	 filter_size:           16, 32

•	 kernel_size:           5, 7

•	 l1_size:               64, 128, 256

•	 batch_size:            512, 1024

•	 learning_rate:         0.001, 0.0001

Listing 2-15 presents hyperparameter constraints we made earlier as NNI 

search space.
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Listing 2-15.  LeNet Upgrade HPO search space. ch2/lenet_upgrade/search_

space.json

{

  "activation": {

    "_type": "choice", "_value": ["sigmoid", "relu"]},

Here, we use nested choice method to implement use_dropout hyperparameter:

  "use_dropout": {

    "_type": "choice",

    "_value": [

      {"_name": 0},

      {

        "_name": 1, "rate":

        {"_type": "choice", "_value": [0.3, 0.5, 0.7]}

      }

    ]

  },

  "filter_size": {

    "_type": "choice", "_value": [16, 32]},

  "kernel_size": {

    "_type": "choice", "_value": [5, 7]},

  "l1_size": {

    "_type": "choice", "_value": [64, 128, 256]},

  "batch_size": {

    "_type": "choice", "_value": [512, 1024]},

  "learning_rate": {

    "_type": "choice", "_value": [0.001, 0.0001]}

}

And just like in the previous section, the next step is to make TensorFlow and 

PyTorch implementations of the LeNet Upgrade model.
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�TensorFlow LeNet Upgrade Implementation
In this section, we will examine the LeNet Upgrade model’s implementation using 

TensorFlow (Keras API).

We will examine only __init__ and call methods in TfLeNetUpgradeModel. 

Other methods are the same as in TfLeNetModel (ch2/lenet_hpo/tf_lenet_model.py). 

Listing 2-16 shows the LeNet Upgrade model with six hyperparameters.

Listing 2-16.  LeNet Upgrade. TensorFlow implementation. ch2/lenet_upgrade/

tf_lenet_upgrade_model.py

class TfLeNetUpgradeModel(Model):

    def __init__(

            self,

            filter_size,

            kernel_size,

            l1_size,

            activation,

            use_dropout,

            dropout_rate = None

    ):

        super().__init__()

First layer stack with activation variable:

        self.conv1 = Conv2D(

            filters = filter_size,

            kernel_size = kernel_size,

            activation = activation

        )

        self.pool1 = MaxPool2D(pool_size = 2)

        self.conv2 = Conv2D(

            filters = filter_size * 2,

            kernel_size = kernel_size,

            activation = activation

        )
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        self.pool2 = MaxPool2D(pool_size = 2)

        self.flatten = Flatten()

        self.fc1 = Dense(

            units = l1_size,

            activation = activation

        )

We add dropout layer if use_dropout and identity layer otherwise:

        if use_dropout:

            self.drop = Dropout(rate = dropout_rate)

        else:

            self.drop = tf.identity

Final linear layer stack:

        self.fc2 = Dense(

            units = 10,

            activation = 'softmax'

        )

LeNet Upgrade model invokes each layer sequentially:

    def call(self, x, **kwargs):

        x = self.conv1(x)

        x = self.pool1(x)

        x = self.conv2(x)

        x = self.pool2(x)

        x = self.flatten(x)

        x = self.fc1(x)

        x = self.drop(x)

        return self.fc2(x)

And after implementing LeNetUpgradeModel, we can implement the NNI trial 

script using Listing 2-17.

We import necessary modules and pass code root directory to system path:
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Listing 2-17.  NNI trial script with TensorFlow LeNetUpgrade implementation. 

ch2/lenet_upgrade/tf_trial.py

import os

import sys

import nni

# We use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_upgrade.tf_lenet_upgrade_model import TfLeNetUpgradeModel

The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

    use_dropout = bool(hparams['use_dropout']['_name'])

    model_params = {

        "filter_size": hparams['filter_size'],

        "kernel_size":   hparams['kernel_size'],

        "l1_size":     hparams['l1_size'],

        "activation":  hparams['activation'],

        "use_dropout": use_dropout

    }

    if use_dropout:

        model_params['dropout_rate'] = hparams['use_dropout']['rate']

    model = TfLeNetUpgradeModel(**model_params)

    model.train(

        batch_size = hparams['batch_size'],

        learning_rate = hparams['learning_rate']

    )

    accuracy = model.test()

    # send final accuracy to NNI

    nni.report_final_result(accuracy)
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Next, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'use_dropout':   {'_name': 1, 'rate': 0.5},

        'activation':    'relu',

        'filter_size':   32,

        'kernel_size':   3,

        'l1_size':       64,

        'batch_size':    512,

        'learning_rate': 1e-3,

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand-alone mode, so you can run a 

ch2/lenet_upgrade/tf_trial.py to test its execution with custom parameters.

�PyTorch LeNet Upgrade Implementation
In this section, we will examine the LeNet Upgrade model’s implementation using 

PyTorch.

We will examine only __init__ and forward methods in PtLeNetUpgradeModel. 

Other methods are the same as in PtLeNetModel (ch2/lenet_hpo/pt_lenet_model.py). 

Listing 2-18 shows the LeNet Upgrade model with six hyperparameters:
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Listing 2-18.  LeNet Upgrade. PyTorch implementation. ch2/lenet_upgrade/

pt_lenet_upgrade_model.py

class PtLeNetUpgradeModel(nn.Module):

    def __init__(

            self,

            filter_size,

            kernel_size,

            l1_size,

            activation,

            use_dropout,

            dropout_rate = None

    ):

        super(PtLeNetUpgradeModel, self).__init__()

We set self.act layer by activation variable:

        # Activation Function

        if activation == 'relu':

            self.act = torch.relu

        elif activation == 'sigmoid':

            self.act = torch.sigmoid

        else:

            raise Exception(f'Unknown activation: {activation}')

We add dropout layer if use_dropout and identity layer otherwise:

        if use_dropout:

            self.drop = nn.Dropout(p = dropout_rate)

        else:

            self.drop = nn.Identity()

Next, we set other LeNet layers:

        # Saving l1_size HyperParameter

        self.l1_size = l1_size
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        self.conv1 = nn.Conv2d(

            1,

            filter_size,

            kernel_size = kernel_size

        )

        self.conv2 = nn.Conv2d(

            filter_size,

            filter_size * 2,

            kernel_size = kernel_size

        )

        # Lazy fc1 Layer Initialization

        self.fc1__in_features = 0

        self._fc1 = None

        self.fc2 = nn.Linear(l1_size, 10)

LeNet Upgrade model invokes each layer sequentially:

    def forward(self, x):

        x = self.act(self.conv1(x))

        x = F.max_pool2d(x, 2, 2)

        x = self.act(self.conv2(x))

        x = F.max_pool2d(x, 2, 2)

        # Flatting all dimensions but batch-dimension

        self.fc1__in_features = np.prod(x.shape[1:])

        x = x.view(-1, self.fc1__in_features)

        x = self.act(self.fc1(x))

        x = self.drop(x)

        x = self.fc2(x)

        return F.log_softmax(x, dim = 1)

And after implementing LeNetUpgradeModel, we can implement the NNI trial 

script using Listing 2-19.

We import necessary modules and pass code root directory to system path:
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Listing 2-19.  NNI trial script with PyTorch LeNetUpgrade implementation. ch2/

lenet_upgrade/pt_trial.py

import os

import sys

import nni

# We use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_upgrade.pt_lenet_upgrade_model import PtLeNetUpgradeModel

The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

    use_dropout = bool(hparams['dropout']['_name'])

    model_params = {

        "filter_size": hparams['filter_size'],

        "kernel_size": hparams['kernel_size'],

        "l1_size":     hparams['l1_size'],

        "activation":  hparams['activation'],

        "use_dropout": use_dropout

    }

    if use_dropout:

        model_params['dropout_rate'] = hparams['dropout']['rate']

    model = PtLeNetUpgradeModel(**model_params)

    model.train_model(

        batch_size = hparams['batch_size'],

        learning_rate = hparams['learning_rate']

    )

    accuracy = model.test_model()

    nni.report_final_result(accuracy)
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Next, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'dropout':       {'_name': 1, 'rate': 0.5},

        'activation':    'relu',

        'filter_size':   32,

        'kernel_size':   3,

        'l1_size':       64,

        'batch_size':    512,

        'learning_rate': 1e-3,

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand-alone mode, so you can run a 

ch2/lenet_upgrade/pt_trial.py to test its execution with custom parameters.

�Performing LeNet Upgrade HPO Experiment
We are now ready to run our second experiment. We can consider this experiment 

as a battle between Vanilla LeNet model and LeNet enhanced by ReLU and dropout. 

Please be aware that the results of this study will be specific to the MNIST problem. An 

experiment launched on a different dataset can lead to completely different results. 

Listing 2-20 defines the configuration of the LeNet Upgrade experiment.

Listing 2-20.  LeNet Upgrade HPO Experiment configuration. ch2/lenet_

upgrade/config.yml

trialConcurrency: 2
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We will limit the number of trials:

maxTrialNumber: 300

searchSpaceFile: search_space.json

trialCodeDirectory: .

Uncomment PyTorch trial line to run the experiment using PyTorch implementation:

trialCommand: python3 tf_trial.py

#trialCommand: python3 pt_trial.py

GridSearch Tuner cannot be used for search spaces that utilize nested choice, so we 

pick Random Search Tuner:

tuner:

  name: Random

trainingService:

  platform: local

The experiment can be run as follows:

nnictl create --config ch2/lenet_upgrade/config.yml

Note  Duration ~ 3 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

The experiment returned the following best trial hyperparameters:

•	 activation: relu

•	 use_dropout: 1

•	 rate: 0.5

•	 filter_size: 32

•	 kernel_size: 5

•	 l1_size: 256

•	 batch_size: 512

•	 learning_rate: 0.001
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The best trial demonstrated a 0.9923 result, which is a significant improvement 

over the 0.9885 we got in the previous section. We see that the best hyperparameter 

combination uses ReLU activation and dropout (p=0.5) layer. Could this mean that 

LeNet empowered by ReLU and dropout won this battle? Let’s look at the top 1% trials in 

the hyperparameter panel (Figure 2-16) to answer this question.

Figure 2-16.  Hyperparameter panel of LeNet Upgrade HPO top 1% trials

Figure 2-16 demonstrates that all three best hyperparameter combinations have the 

following hyperparameter values:

•	 activation: relu

•	 use_dropout: 1

which can be considered as solid evidence in favor of using the ReLU and dropout 

techniques. Of course, this result may seem somewhat obvious, but this is only because 

you already know about the benefits of using ReLU and dropout layers. Initially, this 

fact did not seem so obvious and required practical evidence, which we have just 

demonstrated.

Finally, let’s take a look at the MNIST database samples that the upgraded LeNet 

model failed to classify. These samples are presented in Figure 2-17.
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Figure 2-17.  Upgraded LeNet model fails

I deliberately didn’t print the correct results in Figure 2-17. Take one minute, write 

down your answer for each sample, and compare it with the correct answers in the 

following:

Answers. #1: 9. #2: 7. #3: 7. #4: 0. #5: 2. #6: 8. #7: 2. #8: 9. #9. 8

If you haven’t made a single mistake, then I admire you! I guessed only four 

numbers. If a human has difficulties recognizing some handwritten characters, then the 

neural network is already close to its performance threshold. The current result of the 

upgraded LeNet model we have developed is close to the best.

This section demonstrates how new deep learning techniques can be injected into 

existing architecture. We defined a search space to choose the best design combination. 

HPO chose an upgraded model design that significantly improved the performance of 

the original model. And this is a very simple and useful technique that will allow you to 

uptune your models using the latest advances in machine learning.

�From LeNet to AlexNet
Libraries: TensorFlow (Keras API), PyTorch (PyTorch Lightning)

Well, handwriting recognition is a rather important task, but it seems that it’s time 

to move on to more complicated problems. Let’s try to classify more complex objects. 

How about developing a model that will classify humans and horses? Figure 2-18 shows 
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samples of “humans or horses” dataset. This dataset contains 300×300 color images, that 

is, (300, 300, 3) tensors. Obviously, the image of a human or a horse is more complex 

than a 28×28 grayscale image of a handwritten number. And perhaps, we will need to 

evolve the LeNet model that we considered earlier. We will call it LeNet Evolution model.

Figure 2-18.  Humans vs. horses dataset

Let’s look at the architecture of the LeNet model again. LeNet model design can 

be divided into two components: feature extraction and decision making. Indeed, the 

convolution layer stack (Conv2D → Activation → MaxPool2D → Conv2D → Activation 

→ MaxPool2D → Flatten) is responsible for extracting image patterns, that is, feature 

extraction. At the same time, the fully connected layer stack (Linear → Activation → 

Linear → SoftMax) is responsible for selecting particular patterns to classify an input 

object. Figure 2-19 shows the areas of responsibility for each component.
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Figure 2-19.  Feature extraction and decision maker components

Since human and horse images are more complex, we need to make the feature 

extraction component more sophisticated. Two types of layer sequences are usually 

responsible for extracting image patterns: Conv2D → Activation → MaxPool2D and 

Conv2D → Activation. We can build an experiment that will inject different feature 

extraction sequences to find the best model design to solve the “human and horses” 

classification problem. In the following, we define three types of feature extraction layer 

sequences adding none as an empty sequence:
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•	 simple: Conv2D → Activation

•	 with_pool: Conv2D → Activation → MaxPool2D

•	 none: Identity layer

Each feature extraction sequence will have additional layer hyperparameters: 

filters, kernel, pool_size.

Let the LeNet Evolution model have three pattern extraction slots. Each of these slots 

can be filled with one of the feature extraction sequences: simple, with_pool, none. For 

example, a LeNet Evolution model can have three feature extraction slots filled with the 

following layer sequences:

•	 with_pool: Conv2D(kernel_size=5, filters=16) → Activation → 

MaxPool2D(pool_size=3)

•	 none: Identity

•	 simple: Conv2D(kernel_size=3, filters=8)→ Activation

And finally, the LeNet Evolution feature extraction component will look the following 

way: Conv2D(kernel_size=5, filters=16) → Activation → MaxPool2D(pool_size=3) 

→ Conv2D(kernel_size=3, filters=8) → Activation.

We can consider feature extraction sequences as the building blocks of the LeNet 

Evolution model, as shown in Figure 2-20.
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Figure 2-20.  LeNet Evolution feature extraction component

And so we can define the three design hyperparameters of the LeNet Evolution 

model. Table 2-4 provides LeNet Evolution model design hyperparameters.

Table 2-4.  LeNet Evolution feature extraction hyperparameters

Name Description Values

fe_slot_1 Feature Extraction Sequence 1 •  none

•  simple

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  with_pool:

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  pool_size: 3, 5, 7

(continued)
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Since the feature extraction component of the LeNet Evolution model returns more 

features than it did with the MNIST problem, we should also let the experiment create 

a more advanced decision maker component. The decision maker component can be 

improved by adding an extra linear layer. This is the easiest and most efficient way to 

enhance a decision maker component. Since we proved the sustainability of the dropout 

layer and ReLU activation in the previous section, they will also be used in the decision 

maker component. Figure 2-21 demonstrates two variants of the decision maker 

component.

Name Description Values

fe_slot_2 Feature Extraction Sequence 2 •  none

•  simple

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  with_pool:

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  pool_size: 3, 5, 7

fe_slot_3 Feature Extraction Sequence 3 •  none

•  simple

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  with_pool:

•  filters: 8, 16, 32

•  kernel: 5, 7, 9, 11

•  pool_size: 3, 5, 7

Table 2-4.  (continued)
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Figure 2-21.  LeNet Evolution decision maker component

The design of the decision maker component will be determined by the following 

hyperparameters shown in Table 2-5.

Table 2-5.  LeNet Evolution decision maker hyperparameters

Name Description Values

l1_size Output size of first linear layer 512, 1024, 2048

l2_size Output size of second linear layer 0, 512, 1024

If 0 value is chosen, then the 

second linear layer is skipped

dropout_rate Dropout probability of dropout layers 0.3, 0.5, 0.7

Also, we will use learning_rate as a training hyperparameter with the following 

options: 0.001, 0.0001.
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In this experiment, we are not just looking for the best hyperparameters, but we are 

trying to create a new architecture of the deep learning model based on the principles 

of the original LeNet model. Here, we try not just to tune an existing model but also to 

create a new one. The list of design hyperparameters is responsible for unique deep 

learning model design.

Listing 2-21 defines NNI search space of the LeNet Evolution model.

The first feature slot fe_slot_1 can be filled with one of these feature extraction 

sequences:

•	 Conv2D(kernel_size, filters) → Activation → 

MaxPool2D(pool_size)

•	 Conv2D(kernel_size, filters) → Activation

•	 None

Listing 2-21.  LeNet Evolution HPO search space. ch2/lenet_to_alexnet/ 

search_space.json

{

  "fe_slot_1": {

    "_type": "choice",

    "_value": [

      {"_name": "none"},

      {

        "_name": "simple",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]}

      },

      {

        "_name": "with_pool",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]},

        "pool_size": {"_type": "choice", "_value": [3, 5, 7]}

      }

    ]

  },
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The second and third feature extraction slots (fe_slot_2, fe_slot_3) have the 

same values set as fe_slot_1:

  "fe_slot_2": {

    "_type": "choice",

    "_value": [

      {"_name": "none"},

      {

        "_name": "simple",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]}

      },

      {

        "_name": "with_pool",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]},

        "pool_size": {"_type": "choice", "_value": [3, 5, 7]}

      }

    ]

  },

  "fe_slot_3": {

    "_type": "choice",

    "_value": [

      {"_name": "none"},

      {

        "_name": "simple",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]}

      },

      {

        "_name": "with_pool",

        "filters": {"_type": "choice", "_value": [8, 16, 32]},

        "kernel": {"_type": "choice", "_value": [5, 7, 9, 11]},

        "pool_size": {"_type": "choice", "_value": [3, 5, 7]}

      }

    ]

  },
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Next, we define decision maker hyperparameters:

"l1_size": {

    "_type": "choice", "_value": [512, 1024, 2048]},

  "l2_size": {

    "_type": "choice", "_value": [0, 512, 1024]},

  "dropout_rate": {

    "_type": "choice", "_value": [0.3, 0.5, 0.7]},

And learning_rate hyperparameter finishes the search space:

  "learning_rate": {

    "_type": "choice", "_value": [0.001, 0.0001]}

}

We have just defined rather nontrivial search space. Let’s hope that the result of the 

experiment will meet our expectations and the resulting architecture will perfectly solve 

the problem of human and horses classification. The next step is to make TensorFlow 

and PyTorch implementations of the LeNet Evolution model.

�TensorFlow LeNet Evolution Implementation
Listing 2-22 presents the LeNet Evolution model’s implementation using TensorFlow.

We import necessary modules:

Listing 2-22.  LeNet Upgrade. TensorFlow implementation. ch2/lenet_to_

alexnet/tf_lenet_evolution.py

import tensorflow as tf

from tensorflow.keras import Model

from tensorflow.keras.layers import (

    Conv2D, Dense,

    Dropout, Flatten, MaxPool2D, ReLU,

)

from tensorflow.keras.optimizers import Adam

from ch2.utils.datasets import hoh_dataset

from ch2.utils.tf_utils import TfNniIntermediateResult
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LeNet Evolution model is initialized with four hyperparameters:

class TfLeNetEvolution(Model):

    def __init__(

            self,

            feat_ext_sequences,

            l1_size,

            l2_size,

            dropout_rate

    ):

        super().__init__()

Model’s layer stack is filled dynamically depending on hyperparameters:

        layer_stack = []

First, we define feature extraction sequences:

        for fe_seq in feat_ext_sequences:

            if fe_seq['type'] in ['simple', 'with_pool']:

                # Constructing Feature Extraction Sequence

                layer_stack.append(

                    Conv2D(

                        filters = fe_seq['filters'],

                        kernel_size = fe_seq['kernel']

                    )

                )

                if fe_seq['type'] == 'with_pool':

                    layer_stack.append(

                        MaxPool2D(

                            pool_size = fe_seq['pool_size']

                        )

                    )

                layer_stack.append(ReLU())

        layer_stack.append(Flatten())
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Next, we construct decision maker component:

        layer_stack.append(

            Dense(

                units = l1_size,

                activation = 'relu'

            )

        )

        layer_stack.append(

            Dropout(rate = dropout_rate)

        )

Additional linear layer is added if l2_size is greater than zero:

        # Optional Linear Layer

        if l2_size > 0:

            layer_stack.append(

                Dense(

                    units = l2_size,

                    activation = 'relu'

                )

            )

            layer_stack.append(

                Dropout(rate = dropout_rate)

            )

Final classification layer:

        layer_stack.append(

            Dense(

                units = 2,

                activation = 'softmax'

            )

        )

And here, we set layer sequence to the model:

        self.seq = tf.keras.Sequential(layer_stack)
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Model execution method is trivial sequence layer call:

    def call(self, x, **kwargs):

        y = self.seq(x)

        return y

As before, we use the Adam optimizer with cross-entropy as the loss function:

    def train(self, learning_rate, batch_size, epochs):

        self.compile(

            optimizer = Adam(learning_rate = learning_rate),

            loss = 'sparse_categorical_crossentropy',

            metrics = ['accuracy']

        )

        (x_train, y_train), _ = hoh_dataset()

        intermediate_cb = TfNniIntermediateResult('accuracy')

        self.fit(

            x_train,

            y_train,

            batch_size = batch_size,

            epochs = epochs,

            verbose = 0,

            callbacks = [intermediate_cb]

        )

Model testing:

    def test(self):

        (_, _), (x_test, y_test) = hoh_dataset()

        loss, accuracy = self.evaluate(x_test, y_test, verbose = 0)

        return accuracy

Since LeNetEvolutionModel is done, we can implement the NNI trial script using 

Listing 2-23.
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We import necessary modules and pass code root directory to system path:

Listing 2-23.  NNI trial script with TensorFlow LeNetEvolution implementation. 

ch2/lenet_to_alexnet/tf_trial.py

import os

import sys

import nni

# We use relative import for user-defined modules

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_to_alexnet.tf_lenet_evolution import TfLeNetEvolution

The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

Feature extraction hyperparameters are converted to universal form:

    feat_ext_sequences = []

    for k, v in hparams.items():

        if k.startswith('fe_slot_'):

            v['type'] = v['_name']

            feat_ext_sequences.append(v)

Model initialization:

    model = TfLeNetEvolution(

        feat_ext_sequences = feat_ext_sequences,

        l1_size = hparams['l1_size'],

        l2_size = hparams['l2_size'],

        dropout_rate = hparams['dropout_rate']

    )
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Here, we train the model during 50 epochs and fixed batch_size = 16:

    model.train(

        batch_size = 16,

        learning_rate = 0.001,

        epochs = 50

    )

Testing the model:

    accuracy = model.test()

And after, we return accuracy metric to NNI tuner:

    # send final accuracy to NNI

    nni.report_final_result(accuracy)

Next, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'fe_slot_1':    {

            '_name':   'simple',

            'filters': 16,

            'kernel':  7

        },

        'fe_slot_2':    {

            '_name':     'with_pool',

            'filters':   8,

            'kernel':    5,

            'pool_size': 5

        },

        'fe_slot_3':    {

            '_name':     'with_pool',

            'filters':   8,

            'kernel':    5,

            'pool_size': 3

        },
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        'l1_size':      1024,

        'l2_size':      512,

        'dropout_rate': .3,

        'learning_rate': 0.001

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand–alone mode, so you can run a 

ch2/lenet_to_alexnet/tf_trial.py to test its execution with custom parameters.

�PyTorch LeNet Evolution Implementation
Section, we will examine the LeNet Evolution model’s implementation using PyTorch 

Lightning. PyTorch Lightning is a seamless PyTorch wrapper that helps eliminate the 

PyTorch code boilerplate. It is more concise and better suited for such tasks. Listing 2-24 

demonstrates the LeNet Evolution model based on PyTorch Lightning.

We import necessary modules:

Listing 2-24.  LeNet Evolution. PyTorch Lightning implementation. ch2/lenet_

to_alexnet/pt_lenet_evolution.py

import nni

import torch

import torch.nn.functional as F

import pytorch_lightning as pl

from sklearn.metrics import accuracy_score

from torch import nn

import numpy as np

from torch.utils.data import DataLoader

from ch2.utils.datasets import hoh_dataset

from ch2.utils.pt_utils import SimpleDataset
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LeNet Evolution model is initialized with all five hyperparameters. PyTorch 

Lightning model encapsulates initialization and training logic in the same class, so we 

pass all hyperparameters at once:

class PtLeNetEvolution(pl.LightningModule):

    def __init__(

            self,

            feat_ext_sequences,

            l1_size,

            l2_size,

            dropout_rate,

            learning_rate

    ) -> None:

        super().__init__()

learning_rate and dropout_rate hyperparameters are stored explicitly:

        self.lr = learning_rate

        self.dropout_rate = dropout_rate

        self.save_hyperparameters()

The first step is to create a layer sequence for the feature extraction component 

dynamically:

        fe_stack = []

        # Input size of next conv layer is out_channels of previous one

        in_dim = 3

        for fe_seq in feat_ext_sequences:

            if fe_seq['type'] in ['simple', 'with_pool']:

                fe_stack.append(

                    nn.Conv2d(

                        in_dim,

                        out_channels = fe_seq['filters'],

                        kernel_size = fe_seq['kernel'],

                        bias = False

                    )
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                )

                if fe_seq['type'] == 'with_pool':

                    fe_stack.append(

                        nn.MaxPool2d(

                            kernel_size = fe_seq['pool_size']

                        )

                    )

                fe_stack.append(nn.ReLU())

                in_dim = fe_seq['filters']

        self.fe_stack = nn.Sequential(*fe_stack)

The next step is to create a layer sequence for the decision maker component:

        # Lazy fc1 Layer Initialization

        self.fc1__in_features = 0

        self._fc1 = None

Additional linear layer is added if l2_size is greater than zero:

        if l2_size > 0:

            self.fc2 = nn.Sequential(

                nn.Linear(l1_size, l2_size),

                nn.ReLU(),

                nn.Dropout(dropout_rate)

            )

            self.fc3 = nn.Linear(l2_size, 2)

        else:

            self.fc2 = nn.Identity()

            self.fc3 = nn.Linear(l1_size, 2)

Here, we again utilize the familiar lazy layer initialization pattern:

    @property

    def fc1(self):

        if self._fc1 is None:

            self._fc1 = nn.Sequential(

                nn.Linear(

                    self.fc1__in_features,
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                    self.hparams['l1_size']

                ),

                nn.ReLU(),

                nn.Dropout(self.dropout_rate)

            )

        return self._fc1

Model execution method:

    def forward(self, x):

        # calling feature extraction layer sequence

        x = self.fe_stack(x)

        # Flatting all dimensions but batch-dimension

        self.fc1__in_features = np.prod(x.shape[1:])

        x = x.view(-1, self.fc1__in_features)

        x = self.fc1(x)

        x = self.fc2(x)

        x = self.fc3(x)

        return F.log_softmax(x, dim = 1)

We use the Adam optimizer with the learning_rate hyperparameter:

    def configure_optimizers(self):

        return torch.optim.Adam(

            self.parameters(),

            lr = self.lr

        )

Training and test methods use cross-entropy loss function:

    def training_step(self, batch, batch_idx):

        x, y = batch

        p = self(x)

        loss = F.cross_entropy(p, y)

        self.log("train_loss", loss, prog_bar = True)

        nni.report_intermediate_result(loss.item())

        return loss
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    def test_step(self, batch, batch_idx):

        x, y = batch

        p = self(x)

        loss = F.cross_entropy(p, y)

        self.log('test_loss', loss, prog_bar = True)

        return loss

The following method performs the training process on the training dataset and tests 

the trained model on the test dataset:

    def train_and_test_model(self, batch_size, epochs):

Training and testing datasets are prepared:

        (x_train, y_train), (x_test, y_test) = hoh_dataset()

        x_train = torch.from_numpy(x_train).float()

        y_train = torch.from_numpy(y_train).long()

        x_test = torch.from_numpy(x_test).float()

        y_test = torch.from_numpy(y_test).long()

        x_train = torch.permute(x_train, (0, 3, 1, 2))

        x_test = torch.permute(x_test, (0, 3, 1, 2))

        # Dataset to DataLoader

        train_ds = SimpleDataset(x_train, y_train)

        test_ds = SimpleDataset(x_test, y_test)

        train_loader = DataLoader(train_ds, batch_size)

        test_loader = DataLoader(test_ds, batch_size)

PyTorch Lightning trainer:

        trainer = pl.Trainer(

            max_epochs = epochs,

            checkpoint_callback = False

        )

Model training:

        trainer.fit(self, train_loader)
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And finally, we test the trained model:

        test_loss = trainer.test(self, test_loader)

        output = self(x_test)

        predict = output.argmax(dim = 1, keepdim = True)

        accuracy = round(accuracy_score(predict, y_test), 4)

        return accuracy

Since LeNetEvolutionModel is done, we can implement the NNI trial script using 

Listing 2-15.

We import necessary modules and pass code root directory to system path:

Listing 2-25.  NNI trial script with PyTorch Lightning LeNetEvolution 

implementation. ch2/lenet_to_alexnet/pt_trial.py

import os

import sys

import nni

# We use relative import for user-defined modules

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../..'

sys.path.append(SCRIPT_DIR)

from ch2.lenet_to_alexnet.pt_lenet_evolution import PtLeNetEvolution

The trial method initializes the model, trains it, tests it, and returns the NNI metric:

def trial(hparams):

Feature extraction hyperparameters are converted universal to form:

    feat_ext_sequences = []

    for k, v in hparams.items():

        if k.startswith('fe_slot_'):

            v['type'] = v['_name']

            feat_ext_sequences.append(v)
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Model initialization:

    model = PtLeNetEvolution(

        feat_ext_sequences = feat_ext_sequences,

        l1_size = hparams['l1_size'],

        l2_size = hparams['l2_size'],

        dropout_rate = hparams['dropout_rate'],

        learning_rate = hparams['learning_rate']

    )

Next, we train the model during 50 epochs and fixed batch_size = 16 and test it in 

the same method:

    accuracy = model.train_and_test_model(

        batch_size = 16,

        epochs = 50

    )

And after, we return accuracy metric to NNI tuner:

    # send final accuracy to NNI

    nni.report_final_result(accuracy)

Next, we define the main entry point for the trial:

if __name__ == '__main__':

    # Manual HyperParameters

    hparams = {

        'fe_slot_1':    {

            '_name':   'simple',

            'filters': 16,

            'kernel':  7

        },

        'fe_slot_2':    {

            '_name':     'with_pool',

            'filters':   8,

            'kernel':    5,

            'pool_size': 5

        },
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        'fe_slot_3':    {

            '_name':     'with_pool',

            'filters':   8,

            'kernel':    5,

            'pool_size': 3

        },

        'l1_size':      1024,

        'l2_size':      512,

        'dropout_rate': .3,

        'learning_rate': 0.001

    }

    # NNI HyperParameters

    # Run safely without NNI Experiment Context

    nni_hparams = nni.get_next_parameter()

    hparams.update(nni_hparams)

    trial(hparams)

Remember that a trial script can be executed in stand-alone mode, so you can run a 

ch2/lenet_to_alexnet/pt_trial.py to test its execution with custom parameters.

�Performing LeNet Evolution HPO Experiment
And so we come to the climax of this section. We can consider this experiment a 

full-fledged scientific study that will create a unique deep learning model for a 

classification problem on a specific dataset. It will take the best principles of pattern 

recognition from the LeNet model. The LeNet Evolution model attempts to move from 

the LeNet model to a more complex one. Let’s define the experiment configuration 

and run it finally. Listing 2-26 contains the configuration for the LeNet Evolution HPO 

Experiment.

Listing 2-26.  LeNet Evolution HPO Experiment configuration. ch2/lenet_to_

alexnet/config.yml

trialConcurrency: 1
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We will limit the number of trials:

maxTrialNumber: 400

searchSpaceFile: search_space.json

trialCodeDirectory: .

Uncomment PyTorch trial line to run the experiment using PyTorch implementation:

trialCommand: python3 tf_trial.py

#trialCommand: python3 pt_trial.py

GridSearch Tuner cannot be used for search spaces that utilize nested choice, so we 

pick Random Search Tuner:

tuner:

  name: Random

trainingService:

  platform: local

The experiment can be run as follows:

nnictl create --config ch2/lenet_to_alexnet/config.yml

Note  Duration ~ 18 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

Best trial hyperparameters returned by the experiment are listed in Table 2-6.
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Table 2-6.  LeNet Evolution best hyperparameters

Name Values

fe_slot_1 •  with_pool:

•  filters: 32

•  kernel: 7

•  pool_size: 5

fe_slot_2 •  with_pool:

•  filters: 8

•  kernel: 11

•  pool_size: 5

fe_slot_3 •  simple:

•  filters: 8

•  kernel: 7

l1_size 1024

l2_size 512

dropout_rate 0.3

learning_rate 0.0001

The best trial demonstrated a 0.9941 accuracy on test dataset, which is an excellent 

result. We have indeed managed to build a model that distinguishes complex colored 

objects with a very high degree of accuracy. This is a good development! The reader 

may wonder: Why is this section called From LeNet to AlexNet? Well, it’s time to answer 

it. AlexNet is the name of a convolutional neural network architecture that won the 

2012 Image Recognition competition. AlexNet classified images into 1000 different 

classes. At that time, it was a pretty advanced deep learning model. Let’s now compare 

three models: the LeNet model, the model we constructed in this section using HPO 

techniques (LeNet Evolution), and the AlexNet model.

Figure 2-22 shows that the model we built in this section for humans and horses 

classification is somewhere between the original LeNet model and the AlexNet model. 

Our model shows a remarkable test result of 99.41% accuracy. But most importantly, it 

was built entirely automatically with the help of HPO techniques and the NNI tool! We 

did not do any complex calculations or analytical analysis. We have just constructed 

a flexible LeNet Evolution model whose architecture depended on the passed 
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hyperparameters. And as a result, we got a unique model that is fully adapted to solving 

a specific task. These results confirm the promise of HPO’s approach to solving deep 

learning problems.

Figure 2-22.  LeNet, LeNet Evolution, AlexNet

�Summary
In this chapter, we started the HPO study. We studied how to create NNI experiments 

and solve practical problems. We managed to optimize the original LeNet model for 

handwritten digit recognition, upgrade the LeNet model using ReLU and dropout 

techniques, and construct a new complex color pattern recognition model based on 

the existing LeNet model. The results that we have obtained demonstrate the promise 

of AutoDL. In the next chapter, we will continue to study HPO and dive into the more 

advanced NNI usage in Hyperparameter Optimization problems.
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CHAPTER 3

Hyperparameter 
Optimization Under Shell
In the previous chapter, we saw that simple HPO techniques could produce very 

impressive results. Hyperparameter Optimization not only optimizes a specific model 

for a dataset but can even construct new architectures. But the fact is that we have used 

an elementary set of tools for HPO tasks so far. Indeed, up to this point, we have only 

used the primitive Random Search Tuner and Grid Search Tuner. We learned from the 

previous chapter that search spaces could contain millions and hundreds of millions of 

parameters. And if we had unlimited time, we could always use the Grid Search Tuner. 

But unfortunately, this approach is not applicable in reality. We need Tuners that strike 

a good balance between speed and quality in finding the best hyperparameters. Another 

helpful technique is Early Stopping algorithms. Early Stopping algorithms analyze the 

model training process based on intermediate results and decide whether to continue 

training or stop it to save time.

This chapter will study various HPO Tuners and tell about their basic features. We 

will explore the use of Early Stopping algorithms that speed up the experiment stopping 

trials with an unpromising training process. And also, consider creating a custom HPO 

Tuner for a particular task. This chapter will greatly enhance the practical application of 

the Hyperparameter Optimization approach.

�Tuners
We begin this chapter by examining the various HPO Tuners. As you remember, Tuner 

receives metrics from Trial after evaluating a particular search space parameter. 

Based on the existing result history of all completed Trials, Tuner decides which 

hyperparameter configuration to test next. The main task of the Tuner is to find the best 
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hyperparameters as quickly as possible. The choice of a suitable tuner can significantly 

improve the result of an experiment. Let’s take a closer look at how Random Search 

Tuner and Grid Search Tuner act.

Consider a two-variable black-box function which is expressed in Listing 3-1.

Listing 3-1.  Black-box function. ch3/bbf/f1.py

from ch3.bbf.utils import discrete, noise, scatter_plot

def black_box_f1(x, y):

    �z = - 10 * (pow(x, 5) / (3 * pow(x * x * x / 4 + 1, 2) + pow(y, 4) + 

10) + pow(x * y / 2, 2) / 1000)

    d = discrete(z, .8)

    r = d + noise(x, y, scale = 8)

    d = discrete(r, .2)

    return r

I deliberately do not give an analytical formula for this function. black_box_f1 is just 

a black-box function, and we know nothing about its internal logic. In real life, black-box 

functions have the following properties:

•	 They are not continuous

•	 They have random noise

All black-box functions that we will examine in this chapter will satisfy these 

properties. But anyway, we can cheat a little and plot this function:

if __name__ == '__main__':

    scatter_plot(black_box_f1, [-10, 10], [-10, 10])

Figure 3-1 shows that the red area is where the black-box function black_box_f1 

reaches its maximum values.
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Figure 3-1.  Black-box function plot

Note I n this chapter, we will examine only problems of finding the maxima of 
the black-box function f. The problem of finding the maxima of the function f is 
equivalent to the problem of finding the minima of the function -f.

Of course, it would be great to be able to visualize a black-box function before 

research, but there are two main problems here:

•	 Most of the black-box functions have a large number of variables.

•	 Calculating one function value with specific parameters can take 

minutes and even hours.

Therefore, of course, the choice of a Tuner has great importance. Let’s take a look at 

how Random Search Tuner explores the black_box_f1 function. We are implementing 

an embedded experiment to visualize the trial parameters that the tuner has selected 

during the experiment in Listing 3-2.
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We import necessary modules:

Listing 3-2.  Random Search Tuner. ch3/tuners/random_tuner/ 

run_experiment.py

from pathlib import Path

from nni.experiment import Experiment

from ch3.bbf.f1 import black_box_f1

from ch3.bbf.utils import scatter_plot

The search space for black_box_f1 contains all integer pairs in [-10, 10] × [-10, 10]. 

There are 441 elements in the search space.

search_space = {

    "x": {"_type": "quniform", "_value": [-10, 10, 1]},

    "y": {"_type": "quniform", "_value": [-10, 10, 1]}

}

The experiment will have 100 trials:

experiment = Experiment('local')

experiment.config.experiment_name = 'Random Tuner'

experiment.config.trial_concurrency = 4

experiment.config.max_trial_number = 100

experiment.config.search_space = search_space

experiment.config.trial_command = 'python3 trial.py'

experiment.config.trial_code_directory = Path(__file__).parent

We pick Random Search Tuner

experiment.config.tuner.name = 'Random'

and start the experiment:

http_port = 8080

experiment.start(http_port)

Next, we define the main event loop:

while True:

    if experiment.get_status() == 'DONE':
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When the experiment is finished, we display all the trials that were created during 

the experiment:

        search_data = experiment.export_data()

        trial_params = [trial.parameter for trial in search_data]

        # Visualizing Trial Parameters

        scatter_plot(

            black_box_f1, [-10, 10], [-10, 10],

            trial_params, title = 'Random Search'

        )

        search_metrics = experiment.get_job_metrics()

        input("Experiment is finished. Press any key to exit...")

        break

Let’s examine all the trials that Random Search Tuner generated during the 

experiment in Listing 3-2.

Figure 3-2 shows that the trials generated by Random Search Tuner are simple 

random dots scattering. In some cases, the dot (trial) may successfully fall into the area 

of maximum values, but in many cases, the area of maximum values ​​remains unexplored 

properly.

Figure 3-2.  Random Search Tuner Trials
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Let’s now look at the trials that the Grid Search Tuner generates by exploring the 

black_box_f1 function in Listing 3-3.

Listing 3-3.  Grid Search Tuner. ch3/tuners/grid_tuner/run_experiment.py

experiment.config.tuner.name = 'GridSearch'

The Grid Search experiment looks much like the Random Search experiment in 

Listing 3-2. We only use Grid Search Tuner here:

Figure 3-3 demonstrates the trials generated by the Grid Search Tuner.

Figure 3-3.  Grid Search Tuner Trials

We see that the Grid Search Tuner simply iterates through all the values ​​in the 

search space in a particular order. This approach can be helpful when dealing with a 

small search space when it is possible to iterate over all the values ​​in the search space. 

Otherwise, the trials generated by Grid Search Tuner may not even get close to the area 

of maximum values ​​of the black-box function.
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The main problem with Random and Grid tuners is that they don’t interact with 

their trial results in any way. They do not have any “memory” that would allow them to 

highlight promising areas in the search space and concentrate their search on them. We 

will now begin to study tuners that have “memory” and which can explore the search 

space more efficiently.

�Evolution Tuner
Evolution Tuner search is based on the principles of natural evolution. It implements 

two fundamental principles of evolution: selection and mutation. Evolution Tuner 

initializes a population of a specific size. Each population individual represents a 

particular set of parameters in the search space. Each individual has a fitness property 

that indicates the Trial result. We say that individual A is better than individual B:

•	 If A.fitness > B.fitness when the Tuner runs in 

maximization mode

•	 If A.fitness < B.fitness when the Tuner runs in 

minimization mode

Evolution Tuner takes the best individual from a random pair of individuals and 

mutates it randomly by replacing the value of its parameter with another value from 

the search space. After that, the mutated individual replaces the original one, and the 

process is repeated again. Figure 3-4 illustrates this search principle.

Figure 3-4.  Evolution Tuner
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One of the big problems with Evolution Tuner is that mutation doesn’t always 

improve an individual’s fitness. Mutation operation only executes a random change in 

parameter values, and usually, mutation degrades an individual’s performance.

Note T he experienced reader may notice that evolutionary algorithms based on 
the principles of natural selection have another key method – crossover. But many 
studies show that most evolutionary problems can be solved without the crossover 
operation. This implementation of Evolution Tuner does not contain crossover 
operation.

Here is an example of Evolution Tuner configuration:

# config.yml

tuner:

  name: Evolution

  classArgs:

    optimize_mode: maximize

    population_size: 100

Evolution Tuner supports all search space types: choice, choice(nested), randint, 

uniform, quniform, loguniform, qloguniform, normal, qnormal, lognormal, and 

qlognormal.

Let’s take a look at Evolution Tuner in action optimizing black_box_f1 function in 

Listing 3-4.

(Full code is provided in the corresponding file: ch3/tuners/evolution_tuner/ 

run_experiment.py.)

Setting population size:

Listing 3-4.  Evolution Tuner

population_size = 8

Picking the Evolution Tuner for the Experiment:

experiment.config.tuner.name = 'Evolution'

experiment.config.tuner.class_args['optimize_mode'] = 'maximize'

experiment.config.tuner.class_args['population_size'] = population_size
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Unlike Grid Search Tuner and Random Search Tuner, an Evolution Tuner has 

“memory.” That is why it is more attractive to analyze the search process progress. 

We will show the history of the allocation of trial parameters in the search space by 

generations:

•	 1st generation: From 1st trial to 25th trial

•	 2nd generation: From 26th trial to 50th trial

•	 3rd generation: From 51st trial to 75th trial

•	 4th generation: From 76th trial to 100th trial

This approach will allow us to observe the search progress in action:

# Event Loop

while True:

    if experiment.get_status() == 'DONE':

        search_data = experiment.export_data()

The history of trials:

        trial_params = [trial.parameter for trial in search_data]

Splitting trial history by generations:

        trial_params_chunks = [

            trial_params[i:i + 25]

            for i in range(0, len(trial_params), 25)

        ]

Visualizing each generation:

        for i, population in dict(enumerate(trial_params_chunks)).items():

            scatter_plot(

                black_box_f1, [-10, 10], [-10, 10],

                population, title = f'Evolution Generation: {i+1}'

            )

Let’s analyze how the position of individuals changed during the 

evolutionary search.
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Figure 3-5 shows that the allocation of trial parameters is close to random distribution.

Figure 3-5.  Evolution Tuner. Generation: 1

Figure 3-6.  Evolution Tuner. Generation: 2
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In Figure 3-6, we see that most of the individuals are already in the red zone, which 

means that the population is moving smoothly toward the highest values ​​of the function. 

And the last generation shown in Figure 3-7 has at least one individual at the top of the 

red zone.

Note N ot all built-in NNI tuners support random seed setting. Hence, the 
experiments are not reproducible. Therefore, the results you get on your local 
machine may differ from those shown in this chapter. However, the general 
behavior of tuners remains the same on all machines, so the results of the same 
tuner on the same search space are similar.

We can consider the Evolution Tuner as a directed random search. It is slightly better 

than random search but still has many problems due to the too random nature of this 

algorithm. Evolution Tuner usually requires many trials but is usually selected due to its 

simplicity.

Figure 3-7.  Evolution Tuner. Generation: 4
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�Anneal Tuner
Anneal Tuner is based on the Simulated Annealing algorithm. Simulated Annealing is a 

method for solving optimization problems. The algorithm models the physical process 

of heating a material and slowly lowering the temperature to decrease defects, thus 

minimizing the system energy. Annealing Tuner uses randomness as part of the search 

process like Evolution Tuner.

The annealing algorithm consists of the following steps:

1. � The annealing algorithm selects a random element X in the 

search space, and the f(X) value is calculated.

2. � The algorithm performs a random mutation on element X 

producing X’ element from the search space.

If X is a real value, then X’ can be calculated as X’ = X + ΔX, where 

ΔX is a random variable. Next, we compare f(X’) and f(X).

3a. � If f(X’) < f(X), then the mutation is considered as negative.

3b. � If f(X’) ≥ f(X), then the mutation is considered as positive 

and X value is updated by X’.

4. � If the mutation is negative, then the algorithm calculates the 

following values:

•	 r: Uniform random value on (0, 1).

•	 Δ: f(X) - f(X’).

•	 σ is standard deviation of all explored values during the 

search: f(X1), ..., f(Xn) multiplied by degradation ratio ci, where 

c is the positive value lower than 1 and i is the number of 

iteration, σ = ci std([f(X1), …, f(Xn)]).

Next, we compare r and e
�
� , where e is the exponential.

5a. � If r < e
�
� , then the algorithm degrades from X to X’: X ← X’. 

This is done hoping that it will be possible to reach a new 

peak in the next iteration and the transition to X’ is only an 

intermediate step. We can consider this as an exploration 

step that explores an area near X in the search space.
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5b.  If r > e
�
� , then the algorithm doesn’t update X.

The closer f(X) is to f(X’), the more likely an exploration step would be taken.

Steps from 2 to 5 are repeated n times. Figure 3-8 demonstrates the annealing 

algorithm flow.

Figure 3-8.  Annealing algorithm flow

The essence of the annealing algorithm is to get to the “hills” of the surface of the 

black-box function f and study the area of this “hill.” In some cases, the algorithm may 

descend from “hills” hoping to climb to a higher one. The disadvantage of this algorithm 

is that it cannot cover large distances between different “hills” of the surface of the 

function f. Figure 3-9 demonstrates the annealing algorithm in action.
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Figure 3-9.  Annealing algorithm in action

Here is an example of Anneal Tuner configuration:

# config.yml

tuner:

  name: Anneal

  classArgs:

    population_size: 100

Anneal Tuner supports all search space types: choice, choice(nested), randint, 

uniform, quniform, loguniform, qloguniform, normal, qnormal, lognormal, and 

qlognormal.

Listing 3-5 illustrates another black-box function holder_function, based on 

Holder’s function. We will use it for testing Anneal Tuner performance.

Listing 3-5.  Holder’s black-box function. ch3/bbf/holder.py

from numpy import exp, sqrt, cos, sin, pi

def holder_function(x, y):

    """

    Holder's function

    """

    z = abs(sin(x) * cos(y) * exp(abs(1 - (sqrt(x**2 + y**2) / pi))))
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    d = discrete(z, .8)

    r = d + noise(x, y, scale = 8)

    d = discrete(r, .2)

    return r

holder_function can be plotted the following way:

from ch3.bbf.utils import scatter_plot, discrete, noise

if __name__ == '__main__':

    scatter_plot(holder_function, [-10, 10], [-10, 10])

Figure 3-10 shows the surface of holder_function function. This surface is much 

more challenging to explore. It has many hills that are evenly spaced on the surface. The 

highest peaks are in the left corners.

Figure 3-10.  Holder’s function

Let’s examine how Anneal Tuner performs optimizing holder_function in 

Listing 3-6.

(Full code is provided in the corresponding file: ch3/tuners/anneal_tuner/ 

run_experiment.py.)
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Picking the Anneal Tuner for the Experiment:

Listing 3-6.  Anneal Tuner

experiment.config.tuner.name = 'Anneal'

experiment.config.tuner.class_args['optimize_mode'] = 'maximize'

After the experiment is completed, we can analyze the progress of the search for 

Anneal Tuner.

In Figure 3-11, we can see that Anneal Tuner is starting to study the “hills” in the 

lower-left corner.

Figure 3-11.  Anneal Tuner. Generation: 1
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Figure 3-12 demonstrates that the second generation of trials is completely focused 

on the two “hills” in the lower-left corner.

And as we can see in Figure 3-13, Anneal Tuner is completely concentrated on 

exploring only one “hill.” Anneal Tuner found a local maxima but could not find global 

maxima at the bottom of the left corner, close to the solution Anneal Tuner found.

Figure 3-12.  Anneal Tuner. Generation: 2
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Figure 3-13.  Anneal Tuner. Generation: 4

Anneal Tuner and Evolution Tuner are variants of directed random search. They 

are intuitive and straightforward, but they may not always explore the search space 

effectively. Let’s study more advanced tuners based on the Bayesian optimization 

approach.

�Sequential Model-Based Optimization Tuners
In this section, we will examine tuners that are based on Sequential Model-Based 

Optimization (SMBO). SMBO is a formulation of the Bayesian Optimization approach. 

SMBO implements the following technique: building a probability model p(y|x) of the 

black-box function f and use it to pick the most promising elements in the search space 

to evaluate in the black-box function f.

Examine the SMBO method in action. Say we have some trial results we obtained: 

(x1, f(x1)), (x2, f(x2), (x3, f(x3)), as is shown in Figure 3-14.
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Figure 3-14.  Trial results

The next step is to create a probability function p(y|x) based on the data: (x1, f(x1)), 

(x2, f(x2), (x3, f(x3)). p(y|x) is called a “surrogate” for the objective (or black-box) function. 

The surrogate function determines the probability distribution of the objective (or black-

box) function for any element xi in the search space. This means that for any xi, we can 

say that with a p probability, the value f(xi) = yi lies in the (a, b) interval. This concept is 

demonstrated in Figure 3-15.

Figure 3-15.  Probability distributions for xi and xj
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Having surrogate function p(x|y), we can extrapolate it on the whole search space. 

Figure 3-16 gives a visual description of the surrogate model:

•	 Red dashed line shows the actual black-box function.

•	 Black solid line shows the expected mean of the surrogate 

function p(y|x).

•	 Purple dashed line shows the variance of the surrogate 

function p(y|x).

Figure 3-16.  Surrogate model for three trials: (x1, f(x1)), (x2, f(x2)), (x3, f(x3))

Based on the constructed surrogate model, the SMBO algorithm makes its prediction 

regarding the potential maxima of the black-box function. The next goal of the algorithm 

is to find a higher value of the black-box function than the current maximum value 

f(x2). The following trial parameters are determined using the Expected Improvement 

function:

EIy*(x) = 
��

��
�� �� � � �max y y p y x dy, |0

If we assume that f(x2) = y2, then SMBO will choose x4 as the next trial parameter if 

the EIy2(x) will be maximum with x4. Figure 3-17 illustrates the next trial selection by 

SMBO algorithm.
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Figure 3-17.  Expected Improvement

After selecting the x4 as the next trial value, we evaluate f(x4) and rebuild the 

surrogate model concerning the new data: (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), (x4, f(x4)) as 

shown in Figure 3-18.

Figure 3-18.  Surrogate model for four trials: (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), 
(x4, f(x4))
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SMBO aims to converge the surrogate model to the objective function with more 

data, which these approaches do by continually updating the surrogate probability 

model after each objective function evaluation. SMBO Tuners are efficient because they 

choose the next parameters in an informed way.

SMBO Tuner performs the following steps in a cycle until the maximum number of 

trials is reached:

•	 Construct surrogate model based on surrogate probability p(y|x).

•	 Determine next trial parameter x using the Estimated Improvement 

function.

•	 Evaluate black-box function f(x).

•	 Append (x, f(x)) pair to historical dataset.

This is the framework for all SMBO Tuners. The only difference between them is 

the p(y|x) function definition. Different SMBO Tuners have different approaches to 

estimating the probability function p(y|x) based on a historical dataset. This chapter 

will cover the following SMBO Tuners: Tree-Structured Parzen Estimator Tuner and 

Gaussian Process Tuner.

�Tree-Structured Parzen Estimator Tuner
The Tree-Structured Parzen Estimator Tuner (TPE) description may take one or several 

separate chapters. In this section, we will describe the main idea behind the use of 

this Tuner:

	 1.	 In the beginning, TPE Tuner performs N random trials while 

exploring the search space.

	 2.	 Next, the Tuner sorts the executed trials by their values ​​and 

divides them into “good” and “bad” groups based on some 

quantile - γ. The first group, “good” group, contains trials that gave 

the best results and the “bad” one, all other trials.

Figure 3-19 depicts the TPE model after the first two steps.

Chapter 3  Hyperparameter Optimization Under Shell



133

Figure 3-19.  TPE Tuner. “Good” and “bad” separation

	 3.	 Densities l(x) and g(x) are calculated using Parzen Estimators 

(also known as kernel density estimators) for “bad” and “good” 

groups, respectively. Parzen Estimators are a simple average of 

kernels centered on existing data points.

	 4.	 After, the TPE tuner generates n random candidates according 

to the g(x) density function. Each of these candidates is sorted 

by g(x)/l(x) ratio, and the first one is picked as the next trial. 

This means that the TPE tuner allows the selection of random 

candidates in an area where “good” trials are more common. At 

the same time, all candidates are sorted according to g(x)/l(x), 

which means that a candidate with a high density of good trials 

and a low density of bad trials will be selected. This approach 

strikes a good balance between exploration and exploitation.

Figure 3-20 illustrates the algorithm of selecting the next trial parameter.
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Figure 3-20.  TPE Tuner. Next candidate selection

	 5.	 Repeat steps 2–5 until maximum number of trials is reached.

Here is an example of TPE Tuner configuration:

# config.yml

tuner:

  name: TPE

  classArgs:

    optimize_mode: maximize

    seed: 12345

    tpe_args:

      constant_liar_type: 'mean'

      n_startup_jobs: 10

      n_ei_candidates: 20

      linear_forgetting: 100

      prior_weight: 0

      gamma: 0.5

The following is the description of TPE Tuner parameters:

•	 tpe_args.constant_liar_type:

Type: 'best' | 'worst' | 'mean' | null

Default: 'best'
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TPE algorithm itself does not support parallel tuning. This 

parameter specifies how to optimize for trial_concurrency > 1. 

In general, best suit for small trial number and worst suit for large 

trial number.

•	 tpe_args.n_startup_jobs:

Type: int

Default: 20

The first N random trials are generated for warming up in Step 1. If 

the search space is large, this value should be increased.

•	 tpe_args.n_ei_candidates:

Type: int

Default: 24

n random candidates generated in Step 4.

•	 tpe_args.linear_forgetting:

Type: int

Default: 25

TPE lowers the weights of old trials. This parameter controls how 

many iterations it takes for a trial to start decay.

•	 tpe_args.prior_weight:

Type: float

Default: 1.0

Determines the weight of trial configuration in the history trial 

configurations.

•	 tpe_args.gamma:

Type: float

Default: 0.25

Controls how many trials are considered “good.” Represents γ 

parameter from Step 2.
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Note TPE  Tuner configuration parameters mentioned above are only valid from 
NNI version 2.6. They will not work on previous versions.

TPE Tuner supports all search space types: choice, choice(nested), randint, 

uniform, quniform, loguniform, qloguniform, normal, qnormal, lognormal, and 

qlognormal.

We can see from Listing 3-7 how TPE Tuner performs optimizing holder_function.

(Full code is provided in the corresponding file: ch3/tuners/tpe_tuner/ 

run_experiment.py.)

Setting the TPE Tuner for the Experiment:

Listing 3-7.  TPE Tuner

experiment.config.tuner.name = 'TPE'

experiment.config.tuner.class_args['optimize_mode'] = 'maximize'

experiment.config.tuner.class_args['seed'] = 0

experiment.config.tuner.class_args['tpe_args'] = {

    'n_startup_jobs': 20,

    'gamma':          0.5

}

After the experiment is completed, we can analyze the progress of the search for 

TPE Tuner.
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Figure 3-21 shows that the distribution of points is more like a random scattering, 

which makes sense because, in the tuner setup, we specified 'n_startup_jobs': 20, 

which means that the first 20 trials will be completely random.

Figure 3-21.  TPE Tuner. Generation: 1

Figure 3-22.  TPE Tuner. Last generation
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But as we see in Figure 3-22, the TPE Tuner finds the global maxima of  

holder_function, thanks to a probabilistic exploration model.

The TPE Tuner is intuitively clear, based on a solid probability ground, and has a 

good balance between exploration and exploitation policy. Another nice feature is that it 

supports choice(nested) search type, which can be critical in some research.

�Gaussian Process Tuner
Gaussian Process (GP) Tuner is another SMBO Tuner based on Multivariate Normal 

Distribution. This tuner is similar to the TPE Tuner but uses a Gaussian distribution to 

build the p(y|x) surrogate. A full description of this method lies outside of this book, but 

the reader can learn how this method works here:

•	 “Using Gaussian Processes to Optimize Expensive Functions”: 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.139.9315&rep=rep1&type=pdf

•	 “Gaussian Processes and Bayesian Optimization”: www.cs.cornell.

edu/courses/cs4787/2019sp/notes/lecture16.pdf

Here is an example of GP Tuner configuration:

# config.yml

tuner:

  name: GPTuner

  classArgs:

    optimize_mode: maximize

    utility: 'ei'

    kappa: 5.0

    xi: 0.0

    nu: 2.5

    alpha: 1e-6

    cold_start_num: 10

    selection_num_warm_up: 100000

    selection_num_starting_points: 250
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The following is the description of GP Tuner parameters:

•	 utility:

Type: 'ei' | 'ucb' | 'poi'

Default: 'ei'

The utility functions ei, ucb, and poi correspond to Expected 

Improvement, Upper Confidence Bound, and Probability of 

Improvement, respectively.

•	 kappa:

Type: float

Default: 5

Used by the ucb utility function. The bigger the kappa is, the more 

exploratory the tuner will be.

•	 xi:

Type: float

Default: 0

Used by the ei and poi utility functions. The bigger the xi is, the 

more exploratory the tuner will be.

•	 nu:

Type: float

Default: 2.5

Sets the Matern kernel. The smaller the nu is, the less smooth the 

approximated function will be.

•	 alpha:

Type: float

Default: 1e-6

Sets the Gaussian Process Regressor. Larger values correspond to 

an increased noise level in the observations.
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•	 cold_start_num:

Type: int

Default: 10

Number of random explorations to perform before the Gaussian 

Process.

•	 selection_num_warm_up:

Type: int

Default: 1e5

Number of random points to evaluate when getting the point 

which maximizes the acquisition function.

•	 selection_num_starting_points:

Type: int

Default: 250

Number of times to run L-BFGS-B from a random starting point 

after the warm-up.

GP Tuner supports the following search space types: choice, randint, uniform, 

quniform, loguniform, and qloguniform.

GP Tuner suffers a lot from parallelization issues. If you run an experiment in 

concurrency mode (i.e., trial_concurrency > 1), multiple processes simultaneously 

decide on their next trial candidate based on the same historical data. Therefore, different 

processes are testing the same parameters at the same time. This is a big problem with 

all SMBO tuners. But TPE Tuner can get around this problem with the Constant Liar 

technique, while for GP Tuner, this problem remains serious. In Figure 3-23, we can see 

the Trial Metric panel for GP Tuner with trial_concurrency = 8. It shows that GP Tuner 

contains chunks of the same trials, which does not speed up the process of exploring the 

search space in any way.
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Figure 3-23.  GP Tuner. Concurrency issue

Listing 3-8 implements GP Tuner for holder_function optimization task.

(Full code is provided in the corresponding file: ch3/tuners/gp_tuner/run_

experiment.py.)

Disabling concurrency:

Listing 3-8.  GP Tuner

experiment.config.trial_concurrency = 1

Setting the GP Tuner for the Experiment:

experiment.config.tuner.name = 'GPTuner'

experiment.config.tuner.class_args['optimize_mode'] = 'maximize'

GP Tuner shows excellent results. Figure 3-24 shows the coordinates of all trials 

during the experiment. GP Tuner found both global maxima and evenly explored the 

entire search space.
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Figure 3-24.  GP Tuner. Holder’s black-box function optimization

GP Tuner suggests taking search space elements to find a suitable solution in a small 

number of black-box function evaluations. GP Tuner carries about the surrogate model 

instead of the black-box function itself, using the conjugate gradient method to find the 

highest expected improvement candidates. GP Tuner shows good exploratory behavior 

in testing out areas that seem promising under the current surrogate model.

�Which Tuner to Choose?
In this section, we’ve put a lot of effort into learning about the different tuners, and 

the fair question might be: Hey, so which tuner should I choose? And the answer to this 

question is disappointing: according to the No Free Lunch Theorem, which we already 

considered in Chapter 1, there is no search algorithm (Tuner) that would have any 
advantages over other Tuners for an arbitrary search space. Indeed, for an arbitrary 

search space, the expectation of the TPE Tuner does not exceed the Random Tuner 

expectation. So why do we need any Tuners at all if all of them are equal to Random 

Tuner on an arbitrary search space?!
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And the answer is as follows: search spaces have a specific structure and 

dependencies that allow certain Tuners to outperform others for many kinds of 

problems. Therefore, if we know that we are optimizing a model for an image 

classification problem, this can give us some insight into the search space structure. 

Consequently, we can choose a Tuner that is more likely to show good results 

than others.

There is a separate area of ​​research in which scientists arrange battles of search 

algorithms to determine the best one for a particular class of problems. Scientists use 

benchmarks to estimate the characteristics of the search algorithm. The benchmark 

algorithm evaluates the search algorithm several times for different search spaces. For 

example, the benchmark pseudo-code might look like this:

# search_algos: List of competing Search Algorithms

# problems: List of similar problems

# results: Map (Dict) of results

for algo in search_algos:

    for p in problems:

        metrics = algo(p)

        results[algo].append(metrics)

# Sort algorithms by results

In Table 3-1, I provide a sample benchmark result obtained using NNI 

https://nni.readthedocs.io/en/v2.7/hpo/hpo_benchmark_stats.html.

Table 3-1.  Average rankings for classification tasks

Tuner Name Average Ranking

GP Tuner 4.00

Evolution 4.22

Anneal 4.39

TPE 4.67

Random 5.33
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Some benchmarks can last several days or even weeks. Therefore, it is always more 

convenient to borrow the results obtained and published after research. In many cases, 

you can execute a mini-research yourself, which will help determine the characteristics 

of the search space structure. In any case, understanding the deep learning model 

optimization problem and principles of the Search Tuner is very helpful in choosing the 

right strategy for solving the HPO problem.

�Custom Tuner
Built-in tuners are suitable for most tasks. But there are situations when you need to add 

some custom logic to improve the quality of the HPO Experiment. Indeed, sometimes, 

we may know specific properties of the search space that the built-in tuner does not take 

into account. Also, the developer can implement their original idea and test it on real 

problems. For such cases, NNI allows you to implement a Custom Tuner. Custom Tuner 

can be used in an experiment and shared with other developers.

�Tuner Internals
Each Tuner class should inherit nni.tuner.Tuner and implement the following 

methods: __init__, update_search_space, generate_parameters, receive_trial_

result. Any Tuner can be implemented based on the self-describing sample presented 

in Listing 3-9.

Listing 3-9.  Custom Tuner. ch3/tuners/custom_tuner/custom_tuner_sample.py

from nni.tuner import Tuner

class CustomTunerSample(Tuner):

    def __init__(self, some_arg) -> None:

        # YOUR CODE HERE #

        ...

    def update_search_space(self, search_space):

        """

        Tuners are advised to support updating search

        space at run-time. If a tuner can only set
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        search space once before generating first

        hyper-parameters, it should explicitly document

        this behaviour. 'update_search_space' is called

        at the startup and when the search space is updated.

        """

        # YOUR CODE HERE #

        ...

    def generate_parameters(self, parameter_id, **kwargs):

        """

        This method will get called when the framework

        is about to launch a new trial. Each parameter_id

        should be linked to hyper-parameters returned by

        the Tuner. Returns hyper-parameters, a dict

        in most cases.

        """

        # YOUR CODE HERE #

        # Example: return {"dropout": 0.5, "act": "relu"}

        return {}

    �def receive_trial_result(self, parameter_id, parameters, value, 

**kwargs):

        """

        This method is invoked when a trial reports

        its final result. Should be implemented

        if Tuner assumes 'memory', i.e.,

        Tuner is tracking previous Trials

        """

        # YOUR CODE HERE #

Tuner interacts with Experiment the following way:

	 1.	 Experiment calls update_search_space at the startup.

	 2.	 Experiment requests search space parameters for Trial calling 

generate_parameters.
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	 3.	 Experiment returns Trial results to Tuner calling  

recieve_trial_result.

(Steps 2 and 3 are repeated until max_trial_number is reached or Experiment is 

stopped.)

Figure 3-25 shows Tuner–Experiment interaction as a sequence diagram.

Figure 3-25.  Tuner–Experiment sequence diagram
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Custom Tuner is integrated into the experiment using the following config:

tuner:

  codeDirectory: <path_to_tuner_dir>

  className: <tuner_file_name>.<class_name>

Or it can be integrated into Python embedded experiment as follows:

from nni.experiment import CustomAlgorithmConfig

experiment.config.tuner = CustomAlgorithmConfig()

experiment.config.tuner.code_directory = 'path_to_tuner_dir'

experiment.config.tuner.class_name = 'tuner_file_name.class_name'

experiment.config.tuner.class_args = {'arg': 'value'}

�New Evolution Custom Tuner
Let’s try to develop our Сustom Tuner. This Tuner will be based on the evolutionary 

concepts we examined exploring the Evolution Tuner. We’ll call it NewEvolutionTuner. 

NewEvolutionTuner will initialize the population and act according to the following 

algorithm:

•	 Take the best individual: Xbest

•	 Mutate the best individual in a random way: mutate(Xbest) → Y

•	 Replace the worst individual in the population Xworst with a mutant of 

the best individual Y: Xworst ← Y

Figure 3-26 demonstrates the search approach of NewEvolutionTuner:
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Figure 3-26.  New Evolution Tuner

NewEvolutionTuner implements a greedy “hill-climbing” approach. The Tuner takes 

the best individual (the highest one) and mutates it (hoping that the new individual 

will climb higher). Listing 3-10 use NewEvolutionTuner to find the maxima of Ackley’s 

function.

Listing 3-10.  Ackley’s function. ch3/bbf/ackley.py

 from numpy import exp, sqrt, cos, pi, e

from ch3.bbf.utils import noise

def ackley_function(x, y):

    """

    Ackley’s function

    """

    z = 20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) -\

        exp(0.5 * (cos(2 * pi * x) + cos(2 * pi * y))) + e + 20

    r = z + noise(x, y, scale = 4)

    return r

And here is Ackley’s function visualization:

from ch3.bbf.utils import scatter_plot

if __name__ == '__main__':

    scatter_plot(ackley_function, [-10, 10], [-10, 10])
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We can see in Figure 3-27 the surface of Ackley’s function. It has one highest hill and 

several smaller hills nearby.

Figure 3-27.  Ackley’s function

Before we check how NewEvolutionTuner solves the problem of finding the maxima 

of Ackley’s function, we need to implement it in Listing 3-11.

Importing necessary modules:

Listing 3-11.  NewEvolutionTuner. ch3/tuners/custom_tuner/evolution_tuner.py

import random

import numpy as np

from nni.tuner import Tuner

from nni.utils import (

    OptimizeMode, extract_scalar_reward,

    json2space, json2parameter,

)
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Population consists of individuals. Each individual has DNA that represents a 

search space parameter. Also, individual has a result field that contains Trial result. New 

Evolution individual has the following properties:

•	 x: Search space x coordinate

•	 y: Search space y coordinate

•	 param_id: Trial number

•	 result: Trial result

class Individual:

    def __init__(self, x, y, param_id = None) -> None:

        self.param_id = param_id

        self.x = x

        self.y = y

        self.result = None

    def to_dict(self):

        return {'x': self.x, 'y': self.y}

Population class is a wrapper that manipulates all individuals as a whole:

class Population:

All individuals are stored in individuals property:

    def __init__(self) -> None:

        self.individuals = []

    def add(self, ind):

        self.individuals.append(ind)

Then, we need to add a method that will return an individual by its param_id:

    def get_by_param_id(self, param_id):

        for ind in self.individuals:

            if ind.param_id == param_id:

                return ind

        return None
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At the start of the experiment, the Tuner will create N individuals who will not have 

a trial number. We will call these individuals virgins. get_first_virgin method returns 

the first virgin found in population:

    def get_first_virgin(self):

        for ind in self.individuals:

            if ind.param_id is None:

                return ind

        return None

The following method – get_population_with_result – returns all individuals that 

already received a trial result:

    def get_population_with_result(self):

        �population_with_result = [ind for ind in self.individuals if  

ind.result is not None]

        return population_with_result

The next method returns the best individual from the whole population, that is, an 

individual that has the highest result:

    def get_best_individual(self):

        �sorted_population = sorted(self.get_population_with_result(),  

key = lambda ind: ind.result)

        return sorted_population[-1]

And here, we come to our primary evolution method replace_worst, which will 

develop the population:

•	 We take the best individual from the population.

•	 Mutate the best individual.

•	 Add the mutant of the best individual to the population instead of the 

worst one.

    def replace_worst(self, param_id):

        population_with_result = self.get_population_with_result()

        �sorted_population = sorted(population_with_result, key = lambda 

ind: ind.result)

        worst = sorted_population[0]
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        self.individuals.remove(worst)

        best = self.get_best_individual()

        x = round(best.x + random.gauss(0, 1), 2)

        y = round(best.y + random.gauss(0, 1), 2)

        mutant = Individual(x, y, param_id)

        self.individuals.append(mutant)

        return mutant

We can start implementing the tuner after defining the Individual and Population 

classes:

class NewEvolutionTuner(Tuner):

The Tuner has two parameters, optimize_mode and population size:

    �def __init__(self, optimize_mode = "maximize", population_size = 16) 

-> None:

        self.optimize_mode = OptimizeMode(optimize_mode)

        self.population_size = population_size

Next, Tuner initializes properties related to the search space it is working with:

        self.search_space_json = None

        self.random_state = None

        self.population = Population()

        self.space = None

When the Tuner starts, the update_search_space method is invoked. It generates the 

Population of Random Individuals:

    def update_search_space(self, search_space):

        self.search_space_json = search_space

        self.space = json2space(self.search_space_json)

        self.random_state = np.random.RandomState()

        # Population of Random Individuals is generated

        is_rand = dict()

        for item in self.space:

            is_rand[item] = True
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        for _ in range(self.population_size):

            �params = json2parameter(self.search_space_json, is_rand, self.

random_state)

            ind = Individual(params['x'], params['y'])

            self.population.add(ind)

Experiment calls generate_parameters method to get new parameters for the 

subsequent Trial. Initially, we have a set of individuals generated at the startup and not 

passed to the Tuner (virgins). We take virgins and pass them to Tuner one by one. When 

no virgins are left, we are generating new individuals.

    def generate_parameters(self, parameter_id, **kwargs):

        virgin = self.population.get_first_virgin()

        if virgin:

            virgin.param_id = parameter_id

            return virgin.to_dict()

        else:

            mutant = self.population.replace_worst(parameter_id)

            return mutant.to_dict()

When the Experiment returns the Trial’s result, we save it to an individual object:

    �def receive_trial_result(self, parameter_id, parameters, value, 

**kwargs):

        reward = extract_scalar_reward(value)

        ind = self.population.get_by_param_id(parameter_id)

        ind.result = reward

Well, our NewEvolutionTuner is ready for action! We can launch the experiment 

using the following config file shown in Listing 3-12.

Listing 3-12.  NewEvolutionTuner Experiment configuration. ch3/tuners/

custom_tuner/config.yml

searchSpace:

  x:

    _type: "quniform"

    _value: [-10, 10, 0.01]
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  y:

    _type: "quniform"

    _value: [-10, 10, 0.01]

trialConcurrency: 4

trialCodeDirectory: .

trialCommand: python3 trial.py

tuner:

  codeDirectory: .

  className: evolution_tuner.NewEvolutionTuner

trainingService:

  platform: local

The experiment with custom NewEvolutionTuner can also be run in Python 

embedded mode as it is implemented in Listing 3-13.

(Full code is provided in the corresponding file: ch3/tuners/custom_tuner/ 

run_experiment.py.)

Listing 3-13.  Python embedded experiment

experiment.config.tuner = CustomAlgorithmConfig()

experiment.config.tuner.code_directory = Path(__file__).parent

experiment.config.tuner.class_name = 'evolution_tuner.NewEvolutionTuner'

experiment.config.tuner.class_args = {'population_size': 8}

Let’s launch the Experiment and analyze its results:

$ python3 ch3/tuners/custom_tuner/run_experiment.py

Figure 3-28 shows the locations visited by the NewEvolutionTuner population. We 

see that the population has found the global function’s maxima and began to explore it.
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Figure 3-28.  Locations visited by population of NewEvolutionTuner

Trial Metric panel in Figure 3-29 demonstrates the “hill-climbing” approach in 

action. The main problem with this approach is that it quickly finds a local maxima and 

stops exploring other search space areas.

Figure 3-29.  Trial Metric panel

Of course, developing a custom Tuner is not always an easy task. Still, the ability 

to implement your search algorithm and integrate it into the HPO process can greatly 

increase the experiment results. In this section, we have provided an example of how you 

can do this. If necessary, you can implement your ideas based on the illustration given in 

this section.
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�Early Stopping
Some parameters in the search space produce very low Trial results. And this is normal 

because the Tuner may not always know in advance which areas of the search space 

to explore and which not to explore. Tuner often tries parameters that give very low 

results. The Trial itself is expensive because a lot of time is spent on it. For example, 

training a neural network with a complex architecture on a large dataset can take 

hours. And it would be helpful not to spend a lot of time on trials that show poor 

results in their execution. NNI uses Early Stopping algorithms to solve that issue. Early 

Stopping algorithms analyze the intermediate trial results and compare them with the 

intermediate results of other trials. If the algorithm decides that the intermediate results 

of the current Trial are too low, then it stops the Trial so as not to waste time on it.

Figure 3-30 explains Early Stopping approach. Trial 3 early stopped at step N 

because intermediate results of this Trial were significantly worse than the other trials’ 

intermediate results at step N.

Figure 3-30.  HPO Early Stopping
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The deep learning training algorithms also have Early Stop policies. Training Early 

Stopping policу stops model training when the model starts to degrade or there is no 

improvement for a long time. Do not confuse Training Early Stopping with HPO Early 

Stopping. They are not related in any way. Indeed, take a look at Figure 3-31. Training 

progress is good, and there is no reason to stop the training. But if we compare the 

training process with other trials, it is apparent that it is much worse, and the HPO Early 

Stopping algorithm can stop this Trial.

Figure 3-31.  HPO Early Stopping vs. Training Early Stopping

And Figure 3-32 demonstrates the opposite situation. The training process begins 

to degrade, and the Training Early Stopping algorithm terminates the training process. 

In contrast, the HPO Early Stopping algorithm may consider the current Trail very 

promising because its intermediate results are significantly superior compared to 

other trials.
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Figure 3-32.  HPO Early Stopping vs. Training Early Stopping

Please keep in mind designing a deep learning model and the HPO Experiment that 

Training Early Stopping and HPO Early Stopping are not correlated.

�Median Stop
Median Stop is a straightforward, early stopping rule that stops a pending Trial after step 

N if the Trial’s best objective value by step N is strictly worse than the median value of 

the running averages of all completed trials’ objectives reported up to step N.

Median Stop algorithm can be implemented in Experiment with the following 

experiment configuration:

assessor:

  name: Medianstop

  classArgs:

    # number of warm up steps

    start_step: 10
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Let’s look at a synthetic problem to see the Median Stop algorithm in action. Say, we 

have the following identity function, f: x → x, with the training progress containing 100 

epochs (steps) and expressed by the following rule: 
x epoch
10

 + r, where r is a random 

variable on (-1, 1). We can characterize the function f as an identity function with 

parabolic training progress. Listing 3-14 contains the implementation of function f.

Listing 3-14.  Identity function with parabolic training progress. ch3/early_stop/

medianstop/model.py

import random

def identity_with_parabolic_training(x):

    history = [

        max(round(x / 10, 2) * pow(h, .5) + random.uniform(-3, 3), 0)

        for h in range(1, 101)

    ]

    return x, history

Let’s visualize the training process of the following set of functions: f(0), f(10), f(20), 

..., f(100).

if __name__ == '__main__':

    import matplotlib.pyplot as plt

    for x in range(0, 101, 10):

        final, history = identity_with_parabolic_training(x)

        plt.plot(history, label = str(x))

    plt.ylabel('Intermediate Result')

    plt.xlabel('Epochs')

    plt.legend()

    plt.show()

Figure 3-33 shows various training curves. This plot illustrates that the lower training 

curves are unpromising. Unpromising training can be stopped in advance according to 

the Early Stopping algorithm.
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Figure 3-33.  Parabolic training

Let’s launch an experiment that will use the Median Stop algorithm. The trial script 

is defined in Listing 3-15.

Trial header with imported modules:

Listing 3-15.  Median Stop Trial. ch3/early_stop/medianstop/trial.py

import os

import sys

from time import sleep

import nni

# For NNI use relative import for user-defined modules

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/../../..'

sys.path.append(SCRIPT_DIR)

Executing Trial:

from ch3.early_stop.medianstop.model import identity_with_parabolic_training

if __name__ == '__main__':

    params = nni.get_next_parameter()

    x = params['x']
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    final, history = identity_with_parabolic_training(x)

    for h in history:

        sleep(.1)

        nni.report_intermediate_result(h)

    nni.report_final_result(final)

Listing 3-16 defines the Experiment with Median Stop algorithm.

Listing 3-16.  Experiment with Median Stop Algorithm. ch3/early_stop/

medianstop/config.yml

searchSpace:

  x:

    _type: quniform

    _value: [1, 100, 0.1]

maxTrialNumber: 100

trialConcurrency: 8

trialCodeDirectory: .

trialCommand: python3 trial.py

tuner:

  name: Random

assessor:

  name: Medianstop

  classArgs:

    # number of warm up steps

    start_step: 10

trainingService:

  platform: local

Now we are ready to run the Experiment:

nnictl create --config ch3/early_stop/medianstop/config.yml
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After the experiment is completed, we can observe in Figure 3-34 that many trials 

have the EARLY_STOPPED status, as expected.

Figure 3-34.  Trials detail panel

�Curve Fitting
Curve Fitting Assessor is an LPA (learning, predicting, assessing) algorithm that stops a 

pending Trial at step N if the prediction of the final epoch’s performance is worse than 

the best final performance in the trial history. Curve Fitting Assessor makes a prediction 

about the final result of the Trial’s training and compares it with the completed ones. 

This algorithm treats the Early Stopping task as a time series forecasting problem. If the 

training prediction is pessimistic, then the algorithm stops the trial. Figure 3-35 explains 

the Curve Fitting Early Stopping approach.
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Figure 3-35.  Curve Fitting prediction

Curve Fitting algorithm can be implemented in Experiment with the following 

experiment configuration:

assessor:

  name: Curvefitting

  classArgs:

    epoch_num: 20

    start_step: 6

    threshold: 0.95

    gap: 1

We will not study the principles of the Curve Fitting Early Stopping algorithm in 

this book. You can refer to the official documentation (https://nni.readthedocs.

io/en/v2.7/reference/hpo.html#nni.algorithms.hpo.curvefitting_assessor.

CurvefittingAssessor) or review a paper dedicated to “Speeding up Automatic 

Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning 

Curves” (https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/ 

15-IJCAI-Extrapolation_of_Learning_Curves.pdf).

�Risk to Stop a Good Trial
The Early Stopping algorithm can significantly speed up the completion of an 

experiment and save computational resources. But there is always a risk of stopping a 

good trial too early, which would probably mean rejecting very good parameters in the 

search space. Look at Figure 3-36, early stopped trial could show good performance.
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Figure 3-36.  Good trial early stopped

However, there is a very tiny chance of stopping a trial that can give good results 

too early. Usually, the training curves of deep learning models behave similarly, so if 

the trials’ intermediate results were significantly worse than those of other trials, you 

probably should not expect anything good, but complete the trial and move on to the 

next one.

�Searching for Optimal Functional Pipeline 
and Classical AutoML
Libraries: Scikit-learn

Let’s go back to the problem we studied in the “From LeNet to AlexNet” section 

of Chapter 2. In this task, we built a functional pipeline that would optimally solve 

the image classification problem. Indeed, each layer of deep learning is a particular 

functional operator, and we tried to find the best pipeline of these operators using 

the HPO approach. Figure 3-37 presents neural network architecture as a functional 

pipeline.
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Figure 3-37.  Neural network architecture as functional pipeline

Let’s convert the problem into a more strict mathematical language. We need 

to find a model M that consists of compositions of functions Fi ∈ {F} and maximizes 

the value L(M, D), where L evaluates the performance of model M on dataset 

D. Figure 3-38 formulates the optimal functional pipeline problem:
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Let’s study how this problem can be solved with NNI. As an example, I want to use 

the classic AutoML task, which searches for the optimal pipeline of classical shallow 

machine learning methods to solve a supervised learning problem. In this section, I 

would like to pay tribute to classical machine learning, which increasingly gives way to 

deep learning. This approach can be applied to any problem of searching the optimal 

functional pipeline.

�Problem
Let’s examine binary classification problem with Gamma Telescope Dataset (https://

archive.ics.uci.edu/ml/datasets/magic+gamma+telescope). This dataset contains 

data of signals received by the telescope. The task is to discriminate signals caused by 

primary gammas (signal) from the images of hadronic showers initiated by cosmic rays 

in the upper atmosphere (background). This dataset contains 19020 instances and the 

following columns:

	 1.	 fLength: Type: real. Major axis of ellipse (mm)

	 2.	 fWidth: Type: real. Minor axis of ellipse (mm])

	 3.	 fSize: Type: real. 10-log of sum of content of all pixels (photons)

	 4.	 fConc: Type: real. Ratio of sum of two highest pixels over 

fSize (ratio)

	 5.	 fConc1: Type: real. Ratio of highest pixel over fSize (ratio)

	 6.	 fAsym: Type: real. Distance from highest pixel to center, projected 

onto major axis (mm)

Figure 3-38.  Optimal functional pipeline problem
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	 7.	 fM3Long: Type: real. Third root of third moment along major 

axis (mm)

	 8.	 fM3Trans: Type: real. Third root of third moment along minor 

axis (mm)

	 9.	 fAlpha: Type: real. Angle of major axis with vector to origin (deg)

	 10.	 fDist: Type: real. Distance from origin to center of ellipse (mm)

	 11.	 class: Values: 'g', 'h'. Gamma (signal), Hadron (background).  

g = gamma (signal): 12332. h = hadron (background): 6688

Perhaps the reader understands something in these physical data, but I do not 

understand anything about them. But that’s exactly what we need machine learning for – 

to find patterns and dependencies where we cannot see them ourselves.

The dataset is located in ch3/ml_pipeline/data/magic04.data and is converted to a 

supervised learning problem in Listing 3-17.

Importing modules:

Listing 3-17.  Gamma Telescope Dataset. ch3/ml_pipeline/utils.py

import os

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

def telescope_dataset():

Loading dataset from the file:

    cd = os.path.dirname(os.path.abspath(__file__))

    telescope_df = pd.read_csv(f'{cd}/data/magic04.data')

Dropping na values:

    telescope_df.dropna(inplace = True)

Setting column names:

    telescope_df.columns = [

        'fLength', 'fWidth', 'fSize', 'fConc', 'fConcl',

        'fAsym', 'fM3Long', 'fM3Trans', 'fAlpha', 'fDist', 'class']
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Shuffling dataset:

    telescope_df = telescope_df.iloc[np.random.

permutation(len(telescope_df))]

    telescope_df.reset_index(drop = True, inplace = True)

Class labeling:

    telescope_df['class'] = telescope_df['class'].map({'g': 0, 'h': 1})

    y = telescope_df['class'].values

Splitting dataset on train and test datasets:

    train_ind, test_ind = train_test_split(

        telescope_df.index,

        stratify = y,

        train_size = 0.8,

        test_size = 0.2

    )

    X_train = telescope_df.drop('class', axis = 1).loc[train_ind].values

    X_test = telescope_df.drop('class', axis = 1).loc[test_ind].values

    y_train = telescope_df.loc[train_ind, 'class'].values

    y_test = telescope_df.loc[test_ind, 'class'].values

    return X_train, y_train, X_test, y_test

Since we have identified the problem and prepared the dataset, we can begin to 

determine the machine learning methods that our model will consist of.

�Operators
Now let’s define the functions that will make up the functional pipeline. We will call 

them Operators in the machine learning context. Machine learning operators for a 

classification problem can be separated into three types:

•	 Selectors: Choose the most significant features (columns) from the 

dataset, removing dependent features. Usually reduces the input size. 

The selected features remain unchanged.
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•	 Transformers: Convert input according to some mathematical 

function without changing the input size.

•	 Classifiers: Solve the classification problem itself.

Figure 3-39 shows a machine learning pipeline: selector, transformer, and classifier.

Figure 3-39.  Machine learning operators: selector, transformer, and classifier

Each operator has its own parameters, such as max_depth in the 

DecisionTreeClassifier. Listing 3-18 creates an operator space that will be used for the 

AutoML pipeline.

(Full code is provided in the corresponding file: ch3/ml_pipeline/operator.py.)

Each operator is an object that has a name, implementation, and parameters:

Listing 3-18.  Operator space

class Operator:

    def __init__(self, name, clz, params = None):

        if params is None:

            params = {}

        self.name = name

        self.clz = clz

        self.params = params
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Next, we define the operator space:

class OperatorSpace:

Selector list:

    selectors = [

        Operator('SelectFwe', SelectFwe, {

            'alpha': arange(0, 0.05, 0.001).tolist()

        }),

        Operator('SelectPercentile', SelectPercentile, {

            'percentile': list(range(1, 100))

        }),

(For full selector list, please refer to the source code.)

Transformer list:

    transformers = [

        Operator('Binarizer', Binarizer, {

            'threshold': arange(0.0, 1.01, 0.05).tolist()

        }),

        Operator('FastICA', FastICA, {

            'tol': arange(0.0, 1.01, 0.05).tolist()

        }),

(For full transformer list, please refer to the source code.)

Classifier list:

    classifiers = [

        Operator('GaussianNB', GaussianNB),

        Operator('BernoulliNB', BernoulliNB, {

            'alpha': [0.01, 0.1, 1, 10]

        }),

(For full classifier list, please refer to the source code.)
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Finally, we add an additional auxiliary method get_operator_by_name, which 

returns the operator by its name:

    @classmethod

    def get_operator_by_name(cls, name):

        operators = cls.selectors + cls.transformers + cls.classifiers

        for o in operators:

            if o.name == name:

                return o

        return None

�Search Space
Let’s define search space for the classifier. We assume that the classifier’s operator 

pipeline will have

•	 Selectors: From 0 to 1 (selector is advised but not required)

•	 Transformers: From 0 to 3 (selector is advised but not required)

•	 Classifier: 1 (is required)

Therefore, a pipeline can have from one to five operators. Please take a look at 

Figure 3-40.
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Figure 3-40.  Pipeline cells

The pipeline has five cells. Each cell can be filled with some value from the 

corresponding operator space. The cell can be empty if none value is selected. For 

example, the following pipeline might be selected: Selector3 → none → Transformer1 

→ none → Classifier2, which is equal to Selector3 → Transformer1 → Classifier2. 

This search space definition is huge and challenging to construct manually, so we will 

add a special class in Listing 3-19 that will create an operator search space definition 

according to the NNI specification.
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Listing 3-19.  Search space. ch3/ml_pipeline/search_space.py

from ch3.ml_pipeline.operator import OperatorSpace

class SearchSpace:

Each cell has an operator type that can be filled by selector, transformer, and 

classifier. The operator_search_space method creates a search space for each 

cell type.

    @classmethod

    def operator_search_space(cls, operator_type):

        """

        Search space for operator by `operator_type`

        """

        ss = []

        operators = []

        if operator_type == 'selector':

            # Selectors are not required in Pipeline

            ss.append({'_name': 'none'})

            operators = OperatorSpace.selectors

        elif operator_type == 'transformer':

            # Transformers are not required in Pipeline

            ss.append({'_name': 'none'})

            operators = OperatorSpace.transformers

        elif operator_type == 'classifier':

            operators = OperatorSpace.classifiers

        for o in operators:

            row = {'_name': o.name}

            for p_name, values in o.params.items():

                row[p_name] = {"_type": "choice", "_value": values}

            ss.append(row)

        return ss
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Next, we define a method build that constructs a search space of all cells according 

to the NNI specification:

    @classmethod

    def build(cls):

        return {

            "op_1": {

                "_type":  "choice",

                "_value": cls.operator_search_space('selector')

            },

            "op_2": {

                "_type":  "choice",

                "_value": cls.operator_search_space('transformer')

            },

            "op_3": {

                "_type":  "choice",

                "_value": cls.operator_search_space('transformer')

            },

            "op_4": {

                "_type":  "choice",

                "_value": cls.operator_search_space('transformer')

            },

            "op_5": {

                "_type":  "choice",

                "_value": cls.operator_search_space('classifier')

            }

        }

Even though the search space definition is quite large, we can print it out:

if __name__ == '__main__':

    search_space = SearchSpace.build()

    print(search_space)

We will use dynamic search space construction to launch the experiment in 

embedded mode, although this technique can also be applied to build a static JSON file.
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�Model
So, what do we have by now? We have an operator space and a search space. Let’s now 

implement a model that converts the pipeline configuration into a real machine learning 

classifier. Listing 3-20 introduces MlPipelineClassifier.

Importing modules:

Listing 3-20.  MlPipelineClassifier. ch3/ml_pipeline/model.py

from sklearn.pipeline import Pipeline

from ch3.ml_pipeline.operator import OperatorSpace

from ch3.ml_pipeline.utils import telescope_dataset

class MlPipelineClassifier:

Model receives pipeline configuration and converts it to the actual Scikit-learn 

pipeline:

    def __init__(self, pipe_config):

        ops = []

        for _, params in pipe_config.items():

            # operator name

            op_name = params.pop('_name')

            # skips 'none' operator

            if op_name == 'none':

                continue

            op = OperatorSpace.get_operator_by_name(op_name)

            ops.append((op.name, op.clz(**params)))

        self.pipe = Pipeline(ops)

Model training method:

    def train(self, X, y):

        self.pipe.fit(X, y)
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Computing the accuracy:

    def score(self, X, y):

        return self.pipe.score(X, y)

Since the model is ready, let’s try to initialize it using the sample pipeline parameter 

and apply it to the classification problem:

if __name__ == '__main__':

    pipe_config = {

        'op_1': {

            '_name':      'SelectPercentile',

            'percentile': 2

        },

        'op_2': {

            '_name': 'none'

        },

        'op_3': {

            '_name': 'Normalizer',

            'norm':  'l1'

        },

        'op_4': {

            '_name':          'PCA',

            'svd_solver':     'randomized',

            'iterated_power': 3

        },

        'op_5': {

            '_name':     'DecisionTreeClassifier',

            'criterion': "entropy",

            'max_depth': 8

        }

    }

    model = MlPipelineClassifier(pipe_config)

    X_train, y_train, X_test, y_test = telescope_dataset()
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    model.train(X_train, y_train)

    score = model.score(X_test, y_test)

    print(score)

The model demonstrates 64% accuracy. This is definitely not the result we expect, so 

let’s use the HPO techniques to construct a better-performance model.

�Tuner
Now everything is ready to start the experiment. But I would like to focus on the search 

space that we use. The trial parameter is a sequence of operators, which may contain 

empty operators, that is, S3(p3) → none → T1(p1) → none → C2(p2). But at the same 

time, the following parameter exists too: S3(p3) → none → none → T1(p1) → C2(p2). 

They are different parameters in the search space but generate the same classifier model:

•	 S3(p3) → none → T1(p1) → none → C2(p2)

•	 S3(p3) → none → none → T1(p1) → C2(p2)

•	 S3(p3) → T1(p1) → C2(p2).

Keep in mind that the same two identical operators with different parameters are 

not equal, that is, SelectFwe(alpha=0) is not equal to SelectFwe(alpha=0.05). Let’s 

customize Tuner by forbidding it to create parameters that will generate equivalent 

models concerning the parameters already tried, that is, if we already tried parameter 

P1 = SelectPercentile(percentile = 2) → none → Normalizer(norm='l1') 

→ none → DecisionTreeClassifier(max_depth=8), then parameter P2 = 

SelectPercentile(percentile = 2) → none → none → Normalizer(norm='l1') 

→ DecisionTreeClassifier(max_depth=8) will not be passed to Experiment, 

because the model generated by P2 equals to the model generated by P1. Let’s 

create EvolutionShrinkTuner, which inherits EvolutionTuner and tracks all 

executed pipelines forbidding passing the equal ones to the Experiment. We can see 

EvolutionShrinkTuner implementation in Listing 3-21.
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Listing 3-21.  EvolutionShrinkTuner. ch3/ml_pipeline/evolution_shrink_tuner.py

import json

from nni.algorithms.hpo.evolution_tuner import EvolutionTuner

class EvolutionShrinkTuner(EvolutionTuner):

    def __init__(self, optimize_mode = "maximize", population_size = 32):

        super().__init__(optimize_mode, population_size)

We define registry property that will track all created pipelines:

        self.registry = []

If the super().generate_parameters method of the parent EvolutionTuner object 

returns a parameter that has already been tried, then the super().generate_parameters 

method is called again until a unique parameter is generated. Because EvolutionTuner 

has random behavior, super().generate_parameters can be expected to return 

different parameters on subsequent calls.

    def generate_parameters(self, *args, **kwargs):

        params = super().generate_parameters(*args, **kwargs)

        # If not `params` are not valid generate new ones

        while not self.is_valid(params):

            params = super().generate_parameters(*args, **kwargs)

        return params

The following is_valid method converts the parameter to the canonical form by 

removing none operators and checks if it has already been tried: if it has, then returns 

False; if not, then saves it and returns True.

    def is_valid(self, params):

        # All step names

        �step_names = [v['_name'] for _, v in params.items() if v['_name'] 

!= 'none']

        # No duplicates allowed

        if len(step_names) != len(set(step_names)):

            return False
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        # `params` to canonical string

        canonical_form = 'X'

        for _, step_config in params.items():

            if step_config['_name'] == 'none':

                continue

            canonical_form += '--->' + json.dumps(step_config)

        # If `canonical_form` already tested

        if canonical_form in self.registry:

            return False

        self.registry.append(canonical_form)

        return True

This simple technique introduces the concept of equivalence between the elements 

of the search space and can significantly shrink the search space.

�Experiment
And now, we are finally ready to launch an experiment to find the optimal functional 

pipeline for solving the AutoML problem. The trial script in Listing 3-22 initializes the 

model, prepares datasets, trains the model, tests it, and returns model accuracy to NNI 

Experiment.

(Full code is provided in the corresponding file: ch3/ml_pipeline/trial.py.)

Listing 3-22.  Trial

def trial(hparams):

    #Initializing model

    model = MlPipelineClassifier(hparams)

    # Preparing dataset

    X_train, y_train, X_test, y_test = telescope_dataset()

    model.train(X_train, y_train)

    # Calculating `score` on test dataset

    score = model.score(X_test, y_test)
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    # Send final score to NNI

    nni.report_final_result(score)

Listing 3-23 puts everything together and runs the experiment.

Import modules:

Listing 3-23.  Optimal functional pipeline experiment. ch3/ml_pipeline/ 

run_experiment.py

from pathlib import Path

from nni.experiment import Experiment, CustomAlgorithmConfig

from ch3.ml_pipeline.search_space import SearchSpace

Common Experiment configuration:

experiment = Experiment('local')

experiment.config.experiment_name = 'AutoML Pipeline'

experiment.config.trial_concurrency = 4

experiment.config.max_trial_number = 500

Generating search space:

experiment.config.search_space = SearchSpace.build()

Trial configuration:

experiment.config.trial_command = 'python3 trial.py'

experiment.config.trial_code_directory = Path(__file__).parent

Setting the custom EvolutionShrinkTuner:

experiment.config.tuner = CustomAlgorithmConfig()

experiment.config.tuner.code_directory = Path(__file__).parent

experiment.config.tuner.class_name = 'evolution_shrink_tuner.

EvolutionShrinkTuner'

experiment.config.tuner.class_args = {

    'optimize_mode':   'maximize',

    'population_size': 64

}
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Launching Experiment:

http_port = 8080

experiment.start(http_port)

# Event Loop

while True:

    if experiment.get_status() == 'DONE':

        search_data = experiment.export_data()

        search_metrics = experiment.get_job_metrics()

        input("Experiment is finished. Press any key to exit...")

        break

Figure 3-41 shows top trials of the AutoML Experiment.

Figure 3-41.  AutoML Experiment best Trials
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The best Trial demonstrates 0.89143 accuracy and has the following parameters:

{

    "op_1": {

        "_name": "SelectFwe",

        "alpha": 0.049

    },

    "op_2": {

        "_name": "MinMaxScaler"

    },

    "op_3": {

        "_name": "RobustScaler"

    },

    "op_4": {

        "_name": "none"

    },

    "op_5": {

        "_name": "MLPClassifier",

        "alpha": 0.01,

        "learning_rate_init": 0.01

    }

}

The best Trial can be converted to the functional pipeline:

X → Select(alpha=0.049) → MinMaxScaler → RobustScaler → 

MLPClassifier(alpha=0.01, learning_rate_init=0.01) → Y

In fact, the classifier we have built shows very good results, which are close to optimal. 

The best classifier for this model performs with the following accuracy: 0.898 (“Multi-

Task Architecture with Attention for Imaging Atmospheric Cherenkov Telescope Data 

Analysis,” www.scitepress.org/Papers/2021/102974/102974.pdf). We have just built the 

custom AutoML toolkit based on NNI. This approach can also be applied to any functional 

pipeline optimization. Similarly, you can automatically design deep learning models with 

a sequential layer layout. Indeed, operator space can consist of deep learning layers, and 

the model can be a neural network based on the sequence of layers pipeline. Of course, 

we could dive deeper into applying this approach to Neural Architecture Search, but it has 

significant drawbacks, which we will discuss in the next section.
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�Limits of HPO Applying to Neural Architecture Search
The approach described in this section can be successfully applied to the search for 

neural network architectures but with a significant limitation. Using HPO techniques 

described in this section, we can only get an architecture with a sequential layer stack, 

that is, an architecture in which each layer connects to another one sequentially. This is 

a significant limitation since many modern neural network architectures use multiple 

connections between their layers, as shown in Figure 3-42.

Figure 3-42.  Multi-connected neural network

We need some different and special techniques to search for efficient neural network 

architectures. And we will begin to explore them in the next chapter.

�Hyperparameters for Hyperparameter Optimization
When we talked about automated deep learning, we mentioned that AutoDL solves 

the problem of finding optimal architectures and hyperparameters. But each AutoDL 

technique has many parameters on its own! For example, we need to define the search 

space, a maximum number of trials, find a suitable Tuner, define Tuner parameters, etc. 

It turns out that the problem that solves the hyperparameter selection problem itself 

has even more hyperparameters! What is the point of using the HPO approach and 

other AutoDL methods then? This is a fair question. The answer is that even a poorly 

configured HPO Experiment produces a significantly better model than a model with 
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a poorly configured architecture or hyperparameters. We can never be sure in advance 

what the best settings for an AutoDL method are. However, we can be confident that the 

AutoDL method will surely produce a model close to the optimal one and significantly 

better than the one we would build manually.

�Summary
This chapter has taken a deep dive into Tuner internals and various black-box function 

optimization algorithms. Understanding the principles of Tuners’ behavior and their 

practical application can remarkably improve the design of NNI experiments and HPO 

results. In the next chapter, we’ll move on to the most exciting and interesting part of our 

book: Neural Architecture Search. We will study the latest techniques to find the optimal 

design of neural networks for a specific task.

Chapter 3  Hyperparameter Optimization Under Shell



185
© Ivan Gridin 2022 
I. Gridin, Automated Deep Learning Using Neural Network Intelligence,  
https://doi.org/10.1007/978-1-4842-8149-9_4

CHAPTER 4

Multi-trial Neural 
Architecture Search
And now we come to the most exciting part of this book. As we noted at the end of the last 

chapter, HPO methods are pretty limited for automating the search for the optimal deep 

learning models, but Neural Architecture Search (NAS) dispels these limits. This chapter 

focuses on NAS, one of the most promising areas of automated deep learning. Automatic 

Neural Architecture Search is increasingly important in finding appropriate deep learning 

models. Recent researches have proven the NAS effectiveness and found some models 

that could beat manually tuned ones. NAS is a fairly young discipline in machine learning. 

It took shape as a separate discipline in 2018. Since then, it has made a significant 

breakthrough in automating neural network architecture construction that solves a specific 

problem. The most manual design of neural networks can be replaced by automated 

architecture search soon, so this area is very up and coming for all data scientists. NAS 

produced many top computer vision architectures. Architectures like NASNet, EfficientNet, 

and MobileNet are the result of automated Neural Architecture Search.

There are two types of NAS: Multi-trial and One-shot. In Multi-trial NAS, a model 

evaluator evaluates each sampled model’s performance, and an Exploration Strategy 

samples models from defined Model Space, while One-shot NAS tries to find optimal 

neural architecture training and exploring one Supernet derived from the Model Space. 

This chapter is dedicated to Multi-trial NAS.

This chapter is divided into two parts: Neural Architecture Search Using Retiarii 
(PyTorch) and Classic Neural Architecture Search (TensorFlow). Retiarii is a deep 

learning framework that supports the exploratory training on a neural network Model 

Space developed by NNI experts. Retiarii is an advantageous approach that allows 

structuring and planning the NAS. Unfortunately, the NNI 2.7 version (which is used 

in this book) only implements the Retiarii approach for the PyTorch framework. And 

it would be unfair not to pay attention to the TensorFlow framework in this chapter, so 

https://doi.org/10.1007/978-1-4842-8149-9_4
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the classic methods of NAS using NNI are considered in the Classic Neural Architecture 

Search (TensorFlow) part. In any case, NNI supports TensorFlow for One-shot NAS, 

which we will explore in the next chapter. Therefore, TensorFlow users will be able to 

take full advantage of NAS approaches.

�Neural Architecture As Data Flow Graph
We will begin this chapter by defining how the NAS perceives the neural network 

architecture. Neural architecture is considered as a Data Flow Graph (DFG). DFG is 

a collection of nodes and connections between them. DFG displays the data transfer 

from one node to another. Each node has its own type and parameters. Figure 4-1 

demonstrates an example of DFG.

Figure 4-1.  Data Flow Graph
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In Figure 4-1, we see the DFG, which contains different types of nodes with 

parameters. The architecture of each neural network can be represented as a Data Flow 

Graph. Indeed, in Figure 4-1, we can replace the rectangle node with a convolution 

layer with parameters: padding, stride, filter_size, etc. Neural Architecture Search 

Explorers have no idea about the nature of each of the DFG nodes. The main task is to 

construct a DFG from various deep learning layers, which forms the architecture of a 

neural network and solves a specific problem in the best way.

�Neural Architecture Search Using Retiarii (PyTorch)
Retiarii is the framework developed by NNI experts, and it is the first framework that 

supports deep learning exploratory training. Exploratory training implies that different 

deep neural networks (DNNs) training results are shared. This approach compares 

training of different models, performs optimization, and stops unpromising models 

with poor intermediate results. Also, Retiarii provides a new interface to specify a deep 

learning Model Space for exploration and an interface to describe the Exploration 

Strategy that decides the order to instantiate and train models in, prioritize model 

training, and stop the training of certain models. Retiarii identifies the correlations 

between the instantiated models and develops a set of cross-model optimizations to 

improve the overall exploratory training process. You can read more information about 

the Retiarii framework in the following article: www.usenix.org/system/files/osdi20-

zhang_quanlu.pdf.

NNI version 2.7 has a PyTorch-only implementation of the Retiarii 

framework. In the next NNI releases, the TensorFlow implementation should 

be added. Please refer to the official documentation to check the actual state: 

https://nni.readthedocs.io/en/v2.7/nas/overview.html.
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�Introduction to NAS Using Retiarii
The best way to dive into NAS using Retiarii is to examine a simple example of finding 

the optimal DFG for a particular task. We will not go deep into the design of neural 

networks but will focus on a simple arithmetic problem. Suppose we have some chain of 

operators F, which performs the following actions:

x = 1

x ← x × 2

x ← x × 4

return x

We can enrich the chain F with the following statements:

x = 1

x ← sigmoid(x) or x ← tanh(x) or x ← relu(x)

x ← x × 2

x ← x + 0 or x ← x + 1 or x ← x + 2

x ← x × 4

x ← sigmoid(x) or x ← tanh(x) or x ← relu(x)

return x

The Model Space of this problem can be depicted as shown in Figure 4-2. We need to 

find a DFG that maximizes output.
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Figure 4-2.  Data Flow Graph Model Space

Of course, this is a trivial task, but it is well suited as an introductory example 

of using the Retiarii framework in NNI. Let’s move on to solving this problem. 

Listing 4-1 defines the Model Space.

We import common modules:

Listing 4-1.  Model Space. ch4/retiarii/intro/dummy_model.py

import os

import torch

import nni

Retiarii uses import nni.retiarii.nn.pytorch as nn for PyTorch. It is very 

important to use layers from this package implementing NAS for PyTorch.

import nni.retiarii.nn.pytorch as nn
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First, we need to define the Model Space for Exploration. Model Space in the 

NAS context can be considered as search space in the HPO context. Model Space is 

represented by a class that contains all possible architectures to try. Each such class 

must be annotated with @model_wrapper.

from nni.retiarii import model_wrapper

@model_wrapper

class DummyModel(nn.Module):

    def __init__(self):

        super().__init__()

Different variants of the neural network architecture are determined by special 

methods called Mutators. Mutators define the rules for different variations or mutations 

of the model. The LayerChoice mutator defines different layer choices. In the following, 

LayerChoice selects one of three layers: Tanh, Sigmoid, and ReLU:

        # operator 1

        self.op1 = nn.LayerChoice([

            nn.Tanh(),

            nn.Sigmoid(),

            nn.ReLU()

        ])

Another type of mutation is ValueChoice. This mutator selects one of the values ​​from 

the list:

        # addition

        self.add = nn.ValueChoice([0, 1, 2])

Next, we define the LayerChoice mutator again:

        # operator 2

        self.op2 = nn.LayerChoice([

            nn.Tanh(),

            nn.Sigmoid(),

            nn.ReLU()

        ])
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Finally, we chain all operators together, as shown in Figure 4-2:

    def forward(self, x):

        x = self.op1(x)

        x = x * 2

        x += self.add

        x = x * 4

        x = self.op2(x)

        return x

After, we define the evaluate method, which returns the model result:

def evaluate(model_cls):

Evaluating the model:

    model = model_cls()

    x = torch.Tensor([1])

    y = model(x)

This code is used for model architecture visualization. We will get back to this 

technique later.

    onnx_dir = os.path.abspath(os.environ.get('NNI_OUTPUT_DIR', '.'))

    os.makedirs(onnx_dir, exist_ok = True)

    torch.onnx.export(model, x, onnx_dir + '/model.onnx')

Returning the result:

    nni.report_final_result(y.item())

Once we have defined the Model Space and its instance Evaluation, we can move on 

to launching the experiment with the code shown in Listing 4-2.

Importing necessary modules:

Listing 4-2.  Retiarii Experiment. ch4/retiarii/intro/run_experiment.py

from time import sleep

from nni.retiarii.evaluator import FunctionalEvaluator

from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig

import nni.retiarii.strategy as strategy

from ch4.retiarii.intro.dummy_model import DummyModel, evaluate
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There are seven main steps to launch the Retiarii Experiment:

	 1.	 We set the Model Space:

model_space = DummyModel()

	 2.	 We define the Evaluator, which evaluates model instance:

evaluator = FunctionalEvaluator(evaluate)

	 3.	 Next, we chose a Search Strategy that explores the Model Space:

search_strategy = strategy.Random(dedup = True)

	 4.	 We initialize the Retiarii Experiment with defined Model Space, 

Evaluator, and Search Strategy:

exp = RetiariiExperiment(model_space, evaluator, [], search_

strategy)

	 5.	 Setting Experiment configuration:

exp_config = RetiariiExeConfig('local')

exp_config.experiment_name = 'dummy_search'

exp_config.trial_concurrency = 1

exp_config.max_trial_number = 100

exp_config.training_service.use_active_gpu = False

export_formatter = 'dict'

	 6.	 Launching Experiment:

exp.run(exp_config, 8080)

	 7.	 Returning best results. We can analyze the Experiment’s results in 

WebUI before exit:

while True:

    sleep(1)

    input("Experiment is finished. Press any key to exit...")

    print('Final model:')
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    �for model_code in exp.export_top_models(formatter =  

export_formatter):

        print(model_code)

    break

After the experiment is completed, we can analyze the Trial jobs panel examining 

the best results.

Figure 4-3.  Trial jobs panel

As shown in Figure 4-3, the best model returns 16. And it has the following set of 

parameters:

{

    "model_1": "2",

    "model_2": 2,

    "model_3": "2"

}
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The preceding parameters are not self-describing, so we can use the visualization 

function to render DFG render as shown in Figure 4-4.

Figure 4-4.  Visualization panel

NNI uses Netron to visualize trial models. Netron is a tiny viewer for neural networks, 

deep learning, and machine learning models. Clicking the Netron button, you’ll see the 

screen as shown in Figure 4-5.
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Figure 4-5.  Netron model visualization

Now we can declare that we have found a solution to the problem of finding a model 

that maximizes the value of the chain of operators F. The Data Flow Graph of this model 

is shown in Figure 4-6.
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Figure 4-6.  Best Data Flow Graph in Model Space

The purpose of this example was to demonstrate that the primary goal of a NAS 

approach is to find a DFG that maximizes (or minimizes) a black-box function. In the 

same way HPO methods are searching for parameters that maximize (or minimize) 

the black-box function. After introducing basic NAS techniques, we can dive into more 

details.

�Retiarii Framework
Retiarii framework is designed to separate the main logical entities of Neural 

Architecture Search. This makes the NAS procedure clear and elegant. Using the Retiarii 

framework, the researcher can only focus on particular aspects of the investigation. The 

main components of the Retiarii framework are
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•	 Base Model

•	 Mutator

•	 Model Space

•	 Evaluator

•	 Exploration Strategy

Base Model is the primary skeleton of a neural network. Base Model is actually a 

simple deep learning model that solves some problem. Often the Base Model does 

not show good performance. But it has some primary neural architecture and training 

algorithm.

Mutator is a possible change that a Base Model can be subjected to. Mutator defines 

the transformation of the Base Model architecture into another one. Usually, many 

mutators are applied to Base Model.

Model Space is the set of all possible Base Model mutations. Each mutator generates 

several variants of neural network architectures. Applying all mutators to the Base Model 

defines the Model Space.

Evaluator measures the performance of a sample from the Model Space. This is a 

typical algorithm for training and testing a neural network.

Exploration Strategy defines the Model Space exploration algorithm. The main 

objective of the Exploration Strategy is to find the best model in the least number 

of trials.

All these concepts are pretty familiar to us after studying Hyperparameter 

Optimization. Table 4-1 contains the main logical entities from NAS and HPO. As you 

can see, they mean almost the same thing.

Table 4-1.  NAS and HPO logical entities

NAS HPO

Base Model + Mutator Search space type

Model Space Search space

Evaluator Trial

Exploration Strategy Tuner
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Figure 4-7 illustrates the relationship of various components in the Retiarii 

framework.

Figure 4-7.  Retiarii framework

Let’s go ahead and look at each of these components in detail.

�Base Model
The Base Model is a starting point from which all possible architecture modifications will 

be made. For example, the Base Model for NAS of the MNIST problem can be presented 

as it is shown in Listing 4-3.

Importing PyTorch modules:

Listing 4-3.  Base Model. ch4/retiarii/common/base_model.py

import torch

import torch.nn.functional as F

You must use the nni.retiarii.nn.pytorch as nn module to declare layers in a 

deep learning model:

import nni.retiarii.nn.pytorch as nn
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Base Model must be annotated with nni.retiarii.model_wrapper():

from nni.retiarii import model_wrapper

@model_wrapper

class Net(nn.Module):

Next, we have the classic LeNet model design for the digit recognition problem:

    def __init__(self):

        super().__init__()

        self.conv1 = nn.Conv2d(1, 32, 3, 1)

        self.conv2 = nn.Conv2d(32, 64, 3, 1)

        self.dropout1 = nn.Dropout(0.25)

        self.dropout2 = nn.Dropout(0.5)

        self.fc1 = nn.Linear(9216, 128)

        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):

        x = F.relu(self.conv1(x))

        x = F.max_pool2d(self.conv2(x), 2)

        x = torch.flatten(self.dropout1(x), 1)

        x = self.fc2(self.dropout2(F.relu(self.fc1(x))))

        output = F.log_softmax(x, dim = 1)

        return output

Frequent mistakes in Base Model design are:

•	 Missing @model_wrapper annotation on Base Model

•	 Using import torch.nn as nn instead of nni.retiarii.nn.pytorch 

as nn declaring layers

�Mutators
Base Model is a single model. To create Model Space, we have to add Mutators to the 

Base Model. Each mutator provides a way to change the Base Model. All possible 

mutations applied to the Base Model form the Model Space. NNI provides the following 

mutation operations: LayerChoice, ValueChoice, InputChoice, and Repeat.

Chapter 4  Multi-trial Neural Architecture Search



200

�LayerChoice

LayerChoice mutator forms the candidate layers for a layer placeholder. One of these 

layers is tried in the exploration process. LayerChoice mutator is applied to the Base 

Model the following way:

# import part

import nni.retiarii.nn.pytorch as nn

# model design

self.activation = nn.LayerChoice([

    nn.ReLU(),

    nn.Sigmoid(),

    nn.Identity

])

# forward

x = self.activation(x)

LayerChoice adds layer variations to the Base Model as shown in Figure 4-8.

Figure 4-8.  LayerChoice Mutator

LayerChoice is the most straightforward way to mutate the Base Model.
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�ValueChoice

ValueChoice forms the list of single values to be tried as layer hyperparameters. 

ValueChoice can be used as layer hyperparameters only. It cannot be used as an 

arbitrary hyperparameter like batch_size or learning_rate in the evaluation process. 

ValueChoice mutator is applied to the Base Model the following way:

# import part

import nni.retiarii.nn.pytorch as nn

# model design

self.drop = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75]))

# forward

x = self.drop(x)

ValueChoice can be considered as a layer hyperparameter in the HPO context.

�InputChoice

InputChoice tries different connections. It takes several tensors and chooses n_chosen 

tensors from them. InputChoice mutator is applied to the Base Model the following way:

# import part

import nni.retiarii.nn.pytorch as nn

# model design

self.switch = nn.InputChoice(n_candidates = 2, n_chosen = 1)

# forward

# branch one

a = self.op_a1(x)

a = self.op_a2(a)

# branch two

b = self.op_b1(x)

b = self.op_b2(b)

# choosing connection

x = self.switch([a, b])
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InputChoice is designed to find the best data flow branches in neural network 

architecture. Figure 4-9 illustrates this concept.

Figure 4-9.  InputChoice Mutator

If InputChoice picks more than one candidate tensors (i.e., n_chosen > 1), then 

the reduction strategy is applied: sum, mean, concat. This is a very useful technique that 

allows to extract and merge several connections at the same time. InputChoice for 

multiple candidates with reduction can be applied the following way:

# import part

import nni.retiarii.nn.pytorch as nn

# model design

self.mix = nn.InputChoice(n_candidates = 3, n_chosen = 2, reduction = 'sum')

# forward

# branch one

a = self.op_a1(x)

a = self.op_a2(a)
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# branch two

b = self.op_b1(x)

b = self.op_b2(b)

# branch three

c = self.op_b1(x)

c = self.op_b2(c)

# choosing connection

x = self.mix([a, b, c])

The preceding code generates the search space shown in Figure 4-10.

Figure 4-10.  InputChoice Mutator for multiple candidates

InputChoice Mutator for multiple candidates can choose the same tensor several 

times. It happens when other connections do not bring any helpful information to neural 

network performance.
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Also, InputChoice allows adding skip connection technique to neural architecture. 

Skip connection is one of the core techniques in modern neural network design. It was 

first introduced in 2015 in “Deep Residual Learning for Image Recognition” (https://

arxiv.org/pdf/1512.03385.pdf). Skip connection can be implemented using the 

following pattern:

# import part

import nni.retiarii.nn.pytorch as nn

# model design

self.skip_connect = nn.InputChoice(n_candidates = 2, n_chosen = 1)

# forward

x0 = x.clone()

# connection

x1 = self.op(x)

x0 = self.skip_connect([x0, None])

if x0 is not None:

    # skipping connection

    x1 += x0

In the first case, the model will use the skip connection technique, but not in the 

second one. Figure 4-11 demonstrates skip connection mutation.
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Figure 4-11.  InputChoice. Skip connection mutation

Let’s examine the application of the InputChoice mutator using an arithmetic 

DFG as an example. Say we have x = 1 and three operator pipelines which consist of 

multiplication operators:

1: x → (x × 2)

2: x → (x × 2) → (x × 3)

3: x → (x × 2) → (x × 3) → (x × 4)

You need to select two pipelines whose sum is maximum. You can select the same 

pipeline twice. This is a fairly simple task. It is intuitively clear that the sum of the last 

pipeline will give the maximum value. Let’s run the third pipeline: 1 → 1 × 2 → 2 × 3 → 6 

× 4 → 24; thus, the maximum value we can obtain is 48.

Now let’s obtain the same result using NNI and InputChoice Mutator 

using Listing 4-4.
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Importing common modules:

Listing 4-4.  InputChoice Model Space. ch4/retiarii/common/input_choice/

model_space.py

import os

import torch

Importing nni modules:

import nni

import nni.retiarii.nn.pytorch as nn

from nni.retiarii import model_wrapper

ProdBlock acts as a multiplier operator. It simply multiplies the tensor by 

some value:

class ProdBlock(nn.Module):

    def __init__(self, multiplier = 0):

        super().__init__()

        self.multiplier = multiplier

    def forward(self, x):

        x = x * self.multiplier

        return x

Next, we define the Model Space:

@model_wrapper

class InputChoiceModelSpace(nn.Module):

    def __init__(self):

        super().__init__()

We declare multiplier operators

        self.x2 = ProdBlock(2)

        self.x3 = ProdBlock(3)

        self.x4 = ProdBlock(4)
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and InputChoice mutator that will select the best pair of pipelines:

        self.mix = nn.InputChoice(

            n_candidates = 3,

            n_chosen = 2,

            reduction = 'sum'

        )

forward action executes three different pipelines, and InputChoice mutator tries 

only two of them:

    def forward(self, x):

First pipeline: x → (x × 2)

        # Branch A

        a = self.x2(x)

Second pipeline: 2: x → (x × 2) → (x × 3)

        # Branch B

        b = self.x2(x)

        b = self.x3(b)

Third pipeline: x → (x × 2) → (x × 3) → (x × 4)

        # Branch C

        c = self.x2(x)

        c = self.x3(c)

        c = self.x4(c)

        return self.mix([a, b, c])

Here is the evaluation function:

def evaluate(model_cls):

    model = model_cls()

    x = 1

    out = model(x)

Chapter 4  Multi-trial Neural Architecture Search



208

    # visualizing

    onnx_dir = os.path.abspath(os.environ.get('NNI_OUTPUT_DIR', '.'))

    os.makedirs(onnx_dir, exist_ok = True)

    torch.onnx.export(model, x, onnx_dir + '/model.onnx')

    nni.report_final_result(out)

Now we can run the experiment using this script:

$ python3 ch4/retiarii/common/input_choice/run_experiment.py

You can analyze the results on the WebUI detail page: http://127.0.0.1:8080/detail.

Figure 4-12.  InputChoice Experiment results

In Figure 4-12, we see 32 = 9 trials. The best trial shows 48 and has the following 

parameters: { "model_1_0": 2, "model_1_1": 2 }, which means that the best result is 

achieved with the last pipelines.

return self.mix(

    [

        a, # <- 0

        b, # <- 1

        c  # <- 2

    ])

Such simple examples help to understand better how mutators act before 

proceeding to a real NAS.
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�Repeat

Repeat mutator repeats some action a certain number of times. In the NAS context, the 

Repeat mutator tries to determine how often to iterate the same neural network block. 

For example, the ResNet neural network architecture implies a stack of Residual Blocks. 

But the optimal number of Residual Blocks may depend on the specific task. Figure 4-13 

shows part of the ResNet architecture.

Figure 4-13.  ResNet architecture
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Repeat mutator accepts a function that generates a block by its sequence number. 

Here is the pattern how Repeat mutator can be applied:

import nni.retiarii.nn.pytorch as nn

from nni.retiarii import model_wrapper

We define a custom model block:

class SomeBlock(nn.Module):

    ...

Set a builder function that generates a block concerning its ordinal number in 

the stack:

def create_some_block(block_num):

    # some logic here that depends on 'block_num'

    return SomeBlock(block_num)

@model_wrapper

class RepeatModelSpace(nn.Module):

    def __init__(self):

        super().__init__()

        ...

Defining Repeat mutator:

        self.repeat_block = nn.Repeat(

            create_some_block,

            depth = (1, 5)  # repeat from 1 to 5 times

        )

        ...

    def forward(self, x):

        ...

Evaluating Repeat mutator:

        x = self.repeat_block(x)

        ...
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Therefore, it would be handy to have a tool that iteratively constructs block 

stacks of various lengths. And that’s what the Repeat Mutator does. Let’s examine the 

implementation of the Repeat mutator for a synthetic arithmetic task, as we did for the 

InputChoice mutator. Say we have a sequence of blocks that add values ​​to a tensor. And 

we need to find the optimal length of this sequence. Listing 4-5 describes the Model 

Space for this problem.

AddBlock acts as an addition operator. It simply adds some value to the input tensor.

Listing 4-5.  Repeat Mutator Model Space. ch4/retiarii/common/repeat/model_

space.py

class AddBlock(nn.Module):

    def __init__(self, add = 0):

        super().__init__()

        self.add = add

    def forward(self, x):

        x = x + self.add

        return x

Builder function that creates AddBlock by its ordinal number:

    @classmethod

    def create(cls, block_num):

        return AddBlock(block_num)

Next, we define the Model Space:

@model_wrapper

class RepeatModelSpace(nn.Module):

    def __init__(self):

        super().__init__()
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Repeat mutator generates block sequences of different lengths (from 1 to 5):

        self.repeat = nn.Repeat(

            AddBlock.create,

            depth = (1, 5)

        )

    def forward(self, x):

        return self.repeat(x)

You can examine the experiment by running

$ python3 ch4/retiarii/common/repeat/run_experiment.py

In fact, the primitive mutators LayerChoice, ValueChoice, InputChoice, and Repeat 

allow you to construct a space of any complexity. These mutators can be compared to 

programming language directives:

•	 set: LayerChoice, ValueChoice

•	 if: InputChoice

•	 loop: Repeat

Later in this chapter, we will examine a Model Space construction for a real NAS task 

using these mutators.

�Labeling

All the mutator APIs have an optional argument label. Mutators with the same label 

will share the same value. A typical example is

self.net = nn.Sequential(

    nn.Linear(10, nn.ValueChoice([32, 64, 128], label='hidden_dim'),

    nn.Linear(nn.ValueChoice([32, 64, 128], label='hidden_dim'), 3)

)
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which is the same as

hidden_dim = nn.ValueChoice([32, 64, 128], label='hidden_dim')

self.net = nn.Sequential(

    nn.Linear(10, hidden_dim,

    nn.Linear(hidden_dim, 3)

)

�Example

Listing 4-6 demonstrates a trivial example of the Model Space applied to the image 

classification network.

Listing 4-6.  Model Space. ch4/retiarii/common/model_space.py

@model_wrapper

class Net(nn.Module):

    def __init__(self):

        super().__init__()

        self.conv1 = nn.Conv2d(1, 32, 3, 1)

Applying LayerChoice mutator:

        self.conv2 = nn.LayerChoice([

            nn.Conv2d(32, 64, 3, 1),

            nn.Identity

        ], label = 'conv_layer')

Applying ValueChoice mutator as Dropout layer hyperparameter value:

        self.dropout1 = nn.Dropout(

            nn.ValueChoice([0.25, 0.5, 0.75]),

            label = 'dropout'

        )

        self.dropout2 = nn.Dropout(0.5)
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Applying ValueChoice mutator as Linear hyperparameter value:

        feature = nn.ValueChoice(

            [64, 128, 256],

            label = 'hidden_size'

        )

        self.fc1 = nn.Linear(9216, feature)

        self.fc2 = nn.Linear(feature, 10)

    def forward(self, x):

        x = F.relu(self.conv1(x))

        x = F.max_pool2d(self.conv2(x), 2)

        x = torch.flatten(self.dropout1(x), 1)

        x = self.fc2(self.dropout2(F.relu(self.fc1(x))))

        output = F.log_softmax(x, dim = 1)

        return output

�Evaluators
Retiarii Evaluator is a function that accepts a model class, initiates a model, trains it, tests 

it, and returns a result to Experiment. Evaluator can be implemented using the following 

pattern:

def evaluate(model_cls):

    # Initiate model

    model = model_cls()

    # Saving model graph for Visualization

    onnx_dir = os.path.abspath(os.environ.get('NNI_OUTPUT_DIR', '.'))

    os.makedirs(onnx_dir, exist_ok = True)

    torch.onnx.export(model, input_x, onnx_dir + '/model.onnx')

    # Model Training

    # ... passing intermediate results

    # ... nni.report_intermediate_result()

    # Model Testing

    # nni.report_final_result(out)
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Retiarii Evaluator is pretty close to the Trial approach we used in HPO in previous 

chapters.

�Exploration Strategies
NNI provides the following exploration strategies for Multi-shot NAS: Random 

Strategy, Grid Search, Regularized Evolution, TPE Strategy, and RL Strategy. We are 

already familiar with some of them because they implement the same approach as 

corresponding HPO Tuners. But anyway, let’s briefly study each of them.

�Random Strategy

Random Strategy (nni.retiarii.strategy.Random) randomly samples new models 

from the Model Space. It is a simple but still effective technique to Explore Model Space. 

Random Search is a good first-time Exploration Strategy, and it can give you good clues 

when you have no idea about the dataset you are dealing with and suitable architecture 

designs. Usually, Random Search is used first, and after the Model Space is refined, a 

more intelligent Exploration Strategy is applied.

�Grid Search

Grid Search Strategy (nni.retiarii.strategy.GridSearch) samples new models from 

Model Space using a Grid Search algorithm.

�Regularized Evolution

Regularized Evolution Strategy (nni.retiarii.strategy.RegularizedEvolution) 

implements Genetic Algorithm Search with mutation operator using Tournament Selection 

method. Regularized Evolution Strategy is close to Evolution Tuner we studied in Chapter 3. 

Pseudo-code that describes Regularized Evolution Algorithm is provided in the following.

Regularized Evolution Strategy has three global hyperparameters:

•	 POPULATION_SIZE: The size of a population that will try to participate 

in evolution search

•	 CANDIDATES_N: Number of candidates Tournament Selection method 

will pick from the population

•	 GENERATION_N: Total number of cycles
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# HYPERPARAMETERS

POPULATION_SIZE

CANDIDATES_N

GENERATIONS_N

The population is initialized with random individuals (i.e., random neural 

architecture):

population = []

for _ in range(POPULATION_SIZE):

      individual = generate_random_architecture()

      evaluate(individual)

      population.append(individual)

for _ in range(GENERATIONS):

Algorithm picks CANDIDATES_N random individuals from population:

candidates = random_choice(population, CANDIDATES_N)

From these candidates, the best one is selected (i.e., the individual that has the best 

metric):

best_candidate = get_best_from(candidates)

Random mutation is performed on the best candidate (i.e., algorithm runs several 

Mutators in the original model):

mutant = mutate(best_candidate)

Mutant individual is being evaluated:

evaluate(mutant)

Mutant replaces the worst individual in the population:

replace_worst(population, mutant)

Figure 4-14 demonstrates the algorithm of Regularized Evolution Strategy.
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Figure 4-14.  Regularized Evolution Strategy

The implementation of Regularized Evolution Strategy has the following parameters:

•	 optimize_mode:

Type: string

Default: maximize

Values: ’maximize’ | ’minimize’

Sets the evolution direction.

•	 population_size:

Type: int

Default: 100

The number of individuals in the population.

•	 cycles:

Type: int

Default: 20000

The number of generations of the algorithm.

•	 sample_size:

Type: int

Default: 25

The number of individuals that should participate in each 

Tournament Selection.
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•	 mutation_prob:

Type: float

Default: 0.05

Probability that mutation occurs in each mutator in the Model Space.

For more details, please refer to the original paper describing Regularized Evolution 

approach: https://arxiv.org/abs/1802.01548.

�TPE Strategy

TPE Strategy (nni.retiarii.strategy.TPEStrategy) is a Sequential Model-Based 

Optimization approach based on Tree-structured Parzen Estimator. It acts the same way 

as TPE Tuner we studied in Chapter 3.

For more details, please refer to the original paper describing the TPE approach: 

https://papers.nips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-

Paper.pdf.

�RL Strategy

RL Strategy (nni.retiarii.strategy.PolicyBasedRL) implements the Reinforcement 

Learning approach based on policy-gradient method (Proximal Policy Optimization or 

PPO). RL Strategy implements a special Recurrent Neural Network called Controller. 

Controller generates various model architectures from Model Space. The Controller acts 

as a stochastic policy; hence, it returns the mutation probability for each of the Mutators 

in the Model Space. After each trial, the Controller updates the weights of its RNN 

according to the Proximal Optimization Policy method. This approach allows exploring 

the Model Space by constructing a probability distribution for each of the mutators.

Figure 4-15 demonstrates RL Strategy in action.
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Figure 4-15.  Reinforcement Learning (Proximal Policy Optimization) Strategy

RL Strategy requires tianshou package to be installed. Tianshou is a Reinforcement 

Learning platform based on pure PyTorch.

pip install tianshou

The implementation of RL Strategy has the following parameters:

•	 max_collect:

Type: int

Default: 100

How many epochs Exploration Strategy performs.
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•	 Trial_per_collect:

Type: int

Default: 20

How many trials (trajectories) each time collector collects. After each completed 

trajectory, the trainer will sample the batch from the replay buffer and do the 

Controller update.

For more details, please refer to the original paper describing the Neural Architecture 

Search with Reinforcement Learning: https://arxiv.org/pdf/1611.01578.pdf.

�Experiment
And the last thing left is the Experiment. Retiarii Experiment is launched in stand-alone 

(embedded) mode and contains seven steps:

•	 Declare Model Space

•	 Declare Model Evaluator

•	 Declare Exploration Strategy

•	 Initialize Retiarii Experiment

•	 Configure Retiarii Experiment

•	 Launch Experiment

•	 Returning results

The following pattern can be used to create Retiarii Experiment:

import nni.retiarii.strategy as strategy

from nni.retiarii import model_wrapper

from nni.retiarii.evaluator import FunctionalEvaluator

from nni.retiarii.experiment.pytorch import RetiariiExeConfig, 

RetiariiExperiment,

# Declare Model Space

base_model = Net()

# Declare Model Evaluator

search_strategy = strategy.Random()
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# Declare Exploration Strategy

model_evaluator = FunctionalEvaluator(evaluate_model)

# Initialize Retiarii Experiment

exp = RetiariiExperiment(base_model, model_evaluator, [], search_strategy)

# Configure Retiarii Experiment

exp_config = RetiariiExeConfig('local')

exp_config.experiment_name = 'mnist_search'

exp_config.trial_concurrency = 2

exp_config.max_trial_number = 20

exp_config.training_service.use_active_gpu = False

export_formatter = 'dict'

# uncomment this for graph-based execution engine

# exp_config.execution_engine = 'base'

# export_formatter = 'code'

# Launch Experiment

exp.run(exp_config, 8081 + random.randint(0, 100))

# Returning results

print('Final model:')

for model_code in exp.export_top_models(formatter=export_formatter):

    print(model_code)

You can use the WebUI after running the experiment the same way we did earlier 

launching HPO experiments.

�CIFAR-10 LeNet NAS
Let’s study the application of Multi-trial NAS to the CIFAR-10 problem. CIFAR-10 is a 

common dataset for image classification problem. It contains 60,000 color images (32×32 

pixels) from 10 different classes: airplane, automobile, bird, cat, deer, dog, frog, horse, 

ship, and truck.

Please run the following command to download the CIFAR-10 dataset to your 

machine:

$ python3 ch4/utils/datasets.py
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Figure 4-16 demonstrates several samples from CIFAR10 dataset.

Figure 4-16.  CIFAR-10 samples

Let’s try to find an appropriate deep learning model based on the LeNet approach 

solving the CIFAR-10 classification problem. As we already know, the LeNet image 

recognition architecture can be divided into two components: Feature Extraction 

Component and Decision Maker Component. The Feature Extraction Component consists 

of a sequence of Feature Extraction blocks with convolution layer. Decision Maker 

Component consists of Fully Connected Components with linear layer.

The design of the Feature Extraction block can be as follows:

•	 Conv → Activation

•	 Conv → Pool → Activation

Figure 4-17 demonstrates possible architecture options for the Feature Extraction 

block or Feature Extraction block space.
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Figure 4-17.  Feature Extraction block space

In the same way, we can determine the possible designs for the Fully 

Connected block:

•	 Linear → Activation

•	 Linear → Dropout → Activation

Figure 4-18 illustrates Fully Connected block space.

Figure 4-18.  Fully Connected block space

Note A ctually, Linear → Dropout(p=1) → Activation equals Linear → 
Activation, and it is possible to design the same block space from Figure 4-18 
without using two connections. We could achieve the same block space using 
simple Layer Hyperparameter Optimization: Linear → Dropout(p=[.3, .5, 
.8, 1]) → Activation. But we use two connections on purpose here because 
we want to demonstrate how the Multi-trial NAS chooses the best connection.
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The neural architecture we are looking for consists of Feature Extraction and Fully 

Connected block sequences. Each of these blocks may have the architecture shown in 

Figures 4-17 and 4-18, respectively. The LeNet NAS algorithm must find the optimal 

Feature Extraction and Fully Connected block sequence lengths, as well as their 

architectures. The Model Space for LeNet NAS can be drawn as depicted in Figure 4-19.

Figure 4-19.  LeNet NAS Model Space

We will start implementing the CIFAR-10 LeNet NAS by defining a Feature Extraction 

block in Listing 4-7.

Listing 4-7.  Feature Extraction block. ch4/retiarii/cifar_10_lenet/feature_

extraction.py

from typing import Tuple

import nni.retiarii.nn.pytorch as nn
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FeatureExtractionBlock takes the following parameters:

•	 dim: Input–output channels

•	 kernel_size: Kernel of convolution layer

•	 activation: Activation function

•	 block_num: Ordinal number of the block in Feature Extraction 

sequence

class FeatureExtractionBlock(nn.Module):

    def __init__(

            self,

            dim: Tuple[int, int],

            kernel_size,

            activation,

            block_num = 0

    ) -> None:

        super().__init__()

Initializing core convolution layer:

        self.input_dim = dim[0]

        self.output_dim = dim[1]

        self.conv = nn.Conv2d(

            in_channels = self.input_dim,

            out_channels = self.output_dim,

            kernel_size = kernel_size

        )

Declaring pool and activation layers:

        self.max_pool = nn.MaxPool2d(2, 2)

        self.activation = activation
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Switch choice for two different branches:

•	 Conv → Pool → Activation

•	 Conv → Activation

         self.switch = nn.InputChoice(

             n_candidates = 2,

             n_chosen = 1,

             label = f'fe_switch_{block_num}'

         )

Defining forward method:

    def forward(self, x):

        x = self.conv(x)

        # Branch A

        a = self.max_pool(x)

        a = self.activation(a)

        # Branch B

        b = self.activation(x)

        return self.switch([a, b])

The following method is used in Repeat Mutator. It returns an appropriate 

FeatureExtractionBlock by its ordinal number in the Feature Extraction sequence.

    @classmethod

    def create(cls, activation, in_dimension):

        def create_block(i):

            params = {

                'kernel_size': nn.ValueChoice(

                    [3, 5],

                    label = f'fe_kernel_size_{i}'

                )

            }
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            # Feature Block Dimensions

            if i == 0:

                dim = (in_dimension, 8)

            elif i == 1:

                dim = (8, 16)

            else:

                dim = (16, 16)

            params['dim'] = dim

            params['activation'] = activation

            return FeatureExtractionBlock(**params)

        return create_block

Fully Connected block implementation is similar to Feature Extraction Block and is 

provided in Listing 4-8.

Listing 4-8.  Fully Connected block. ch4/retiarii/cifar_10_lenet/fully_

connected.py

from typing import Tuple, Iterator

from torch.nn import Parameter

import nni.retiarii.nn.pytorch as nn

FullyConnectedBlock takes the following parameters:

•	 dim: Input–output features for linear layer

•	 dropout_rate: Layer hyperparameter for dropout layer

•	 activation: Activation function

•	 block_num: Ordinal number of the block in Fully Connected 

sequence

class FullyConnectedBlock(nn.Module):

    def __init__(

            self,

            dim: Tuple[int, int],
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            dropout_rate,

            activation,

            block_num

    ) -> None:

        super().__init__()

Initializing linear layer:

        self.input_dim = dim[0]

        self.output_dim = dim[1]

        self._linear = None

Declaring dropout and activation layers:

        self.dropout = nn.Dropout(p = dropout_rate)

        self.activation = activation

Switch choice for two different branches:

•	 Linear → Dropout → Activation

•	 Linear → Activation

        self.switch = nn.InputChoice(

            n_candidates = 2,

            n_chosen = 1,

            label = f'fc_switch_{block_num}'

        )

Defining forward method:

    def forward(self, x):

        if not self.input_dim:

            self.input_dim = x.shape[1]

        # Branch A

        a = self.linear(x)

        a = self.dropout(a)

        a = self.activation(a)
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        # Branch B

        b = self.linear(x)

        b = self.activation(b)

        return self.switch([a, b])

The following method is used in Repeat Mutator. It returns an appropriate 

FullyConnectedBlock by its ordinal number in the Fully Connected sequence.

    @classmethod

    def create(cls, activation, units, dropout_rate):

        def create_block(i):

            return FullyConnectedBlock(

                dim = (units[i], units[i + 1]),

                dropout_rate = dropout_rate,

                activation = activation,

                block_num = i

            )

        return create_block

And now we are ready to build LeNet Model Space.

Importing modules:

Listing 4-9.  LeNet Model Space. ch4/retiarii/cifar_10_lenet/lenet_model_

space.py

from typing import Iterator

from torch.nn import Parameter

import nni.retiarii.nn.pytorch as nn

from nni.retiarii import model_wrapper

from ch4.retiarii.cifar_10_lenet.feature_extraction import 

FeatureExtractionBlock

from ch4.retiarii.cifar_10_lenet.fully_connected import FullyConnectedBlock
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Do not forget to add @model_wrapper to the Model Space class:

@model_wrapper

class Cifar10LeNetModelSpace(nn.Module):

    def __init__(self):

        super().__init__()

        # number of classes for CIFAR-10 dataset

        self.class_num = 10

        # RGB input channels

        self.input_channels = 3

First, we define the space for the Feature Extraction sequence. All Feature Extraction 

blocks will share the same activation function:

        fe_activation = nn.LayerChoice(

            [nn.Sigmoid(), nn.ReLU()],

            label = f'fe_activation'

        )

Repeat mutator will create two or three Feature Extraction blocks in a row:

        self.fe = nn.Repeat(

            FeatureExtractionBlock.create(fe_activation, self.input_channels),

            depth = (2, 3), label = 'fe_repeat'

        )

Second, we define a Fully Connected sequence:

        self.flat = nn.Flatten()

All Fully Connected blocks will share the same activation function:

        dm_activation = nn.LayerChoice(

            [nn.Sigmoid(), nn.ReLU()],

            label = f'fc_activation'

        )
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Layer hyperparameters for Fully Connected blocks:

        l1_size = nn.ValueChoice([256, 128], label = 'l1_size')

        l2_size = nn.ValueChoice([128, 64], label = 'l2_size')

        l3_size = nn.ValueChoice([64, 32], label = 'l3_size')

        dropout_rate = nn.ValueChoice([.3, .5], label = 'fc_dropout_rate')

Repeat mutator will create from one to three Fully Connected blocks in a row:

        self.dm = nn.Repeat(

            FullyConnectedBlock.create(

                dm_activation,

                [None, l1_size, l2_size, l3_size],

                dropout_rate

            ),

            depth = (1, 3), label = 'fc_repeat'

        )

Final pair of classification layers (linear_final layer initialized lazily):

        self.linear_final_input_dim = None

        self._linear_final = None

        self.log_max = nn.LogSoftmax(dim = 1)

Executing forward method:

    def forward(self, x):

        x = self.fe(x)

        x = self.flat(x)

        x = self.dm(x)

        if not self.linear_final_input_dim:

            self.linear_final_input_dim = x.shape[1]

        x = self.linear_final(x)

        return self.log_max(x)

Model evaluator is a classical neural network train–test algorithm. You can examine 

its code here: ch4/retiarii/cifar_10_lenet/eval.py.

Fine! Since LeNet Model Space is ready, we can start the research with the code in 

Listing 4-10.
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Importing modules:

Listing 4-10.  LeNet NAS Experiment. ch4/retiarii/cifar_10_lenet/run_cifar10_

lenet_experiment.py

from nni.retiarii.evaluator import FunctionalEvaluator

from nni.retiarii.experiment.pytorch import RetiariiExperiment, 

RetiariiExeConfig

import nni.retiarii.strategy as strategy

from ch4.retiarii.cifar_10_lenet.eval import evaluate

from ch4.retiarii.cifar_10_lenet.lenet_model_space import 

Cifar10LeNetModelSpace

Declaring Model Space:

model_space = Cifar10LeNetModelSpace()

Defining Model Evaluator:

evaluator = FunctionalEvaluator(evaluate)

We will use RL Search Strategy for this experiment:

search_strategy = strategy.PolicyBasedRL(

    trial_per_collect = 10,

    max_collect = 200

)

Initializing Retiarii Experiment:

exp = RetiariiExperiment(model_space, evaluator, [], search_strategy)

Experiment configuration:

exp_config = RetiariiExeConfig('local')

exp_config.experiment_name = 'CIFAR10_LeNet_NAS'

exp_config.trial_concurrency = 1

exp_config.max_trial_number = 500

exp_config.training_service.use_active_gpu = False

export_formatter = 'dict'
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Launching Experiment:

exp.run(exp_config, 8080)

Returning results:

print('Final model:')

for model_code in exp.export_top_models(formatter = export_formatter):

    print(model_code)

The experiment can be run as follows:

$ python3 ch4/retiarii/cifar_10_lenet/run_cifar10_lenet_experiment.py

Note  Duration ~ 20 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

The best model shows 0.84 accuracy on test dataset. It is not a bad result, but it 

seems there is still room for improvement. The best model has the following parameters:

{

  "fe_repeat": 2,

  "fe_kernel_size_0": 3,

  "fe_activation": "1",

  "fe_switch_0": 0,

  "fe_kernel_size_1": 5,

  "fe_kernel_size_2": 3,

  "fc_repeat": 2,

  "l1_size": 128,

  "fc_dropout_rate": 0.3,

  "fc_switch_0": 0,

  "l2_size": 64,

  "fc_switch_1": 0,

  "l3_size": 64,

  "fc_switch_2": 0

}

Chapter 4  Multi-trial Neural Architecture Search



234

The preceding parameters can be interpreted the following way:

"fe_repeat": 2 – means that Repeat mutator generates the Feature Extraction 

sequence of two blocks:

self.fe = nn.Sequential(

    [

        �FeatureExtractionBlock.create(fe_activation, self.input_

channels)(0),

        �FeatureExtractionBlock.create(fe_activation, self.input_

channels)(1),

    ]

)

"fe_kernel_size_0": 3 – means that 3 is chosen in ValueChoice mutator:

'kernel_size': nn.ValueChoice(

    [3, # <- this value

     5],

    label = f'fe_kernel_size_{i}'

)

"fe_switch_0": 0 – means that the first connection is used in InputChoice mutator:

self.switch([a, b]) <- returns a

Also, it is convenient to visualize the architecture using Netron in Trial details panel. 

Figure 4-20 demonstrates the architecture of the best model.
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Figure 4-20.  LeNet NAS Best Model Architecture
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The research we made in this section can be a good starting point for your own NAS 

solutions. It contains basic techniques used in Multi-trial NAS. Here, we used the LeNet 

model as the Base Model, but you can choose any model and any mutators that fit the 

concrete problem better. But we haven’t achieved a great result in the LeNet NAS. In the 

next section, we’ll try another NAS with a more sophisticated approach.

�CIFAR-10 ResNet NAS
Let’s try to find another approach to the architecture search that solves the CIFAR-10 

problem. In 2015, the article “Deep Residual Learning for Image Recognition” (https://

arxiv.org/pdf/1512.03385.pdf) was published. This article had a huge impact on deep 

learning in general. It introduced the concept of a residual term, which could degrade 

the blocks of the neural network, which overwhelmed its performance.

The basic building block of the ResNet model is the Bottleneck block. Original 

Bottleneck block skips connections inside. But we will add this as an optional feature. 

NAS algorithm will define if it is appropriate to use the skip connection technique for the 

Bottleneck block. So there are two variants of Bottleneck block in ResNet NAS with and 

without skip connection technique. The architecture of the Bottleneck block space can 

be demonstrated as shown in Figure 4-21.

Figure 4-21.  Bottleneck block space
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Another component of ResNet is the Residual Cell. Residual Cell consists of 

a sequence of Bottleneck blocks. The optimal length of the Bottleneck sequence 

in Residual Cell depends on the concrete dataset. Figure 4-22 shows the Residual 

Cell space.

Figure 4-22.  Residual Cell space

And finally, we can construct the ResNet model. ResNet has the following 

architecture:

•	 Initial convolution layer

•	 Residual Cell sequence

•	 Several Fully Connected layers

The optimal length of a Residual Cell sequence depends on the dataset. And we 

will try to find it in ResNet NAS. Figure 4-23 presents the complete Model Space for 

ResNet NAS.
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Figure 4-23.  ResNet NAS space

Listing 4-11 defines the Bottleneck block for ResNet Model Space.

Listing 4-11.  ResNet NAS Bottleneck block. ch4/retiarii/cifar_10_resnet/

bottle_neck.py

import nni.retiarii.nn.pytorch as nn

class Bottleneck(nn.Module):

Bottleneck expansion ratio:

    expansion = 4

The number of output channels that are produced by Bottleneck block:

    @classmethod

    def result_channels_num(cls, channels):

        return channels * cls.expansion

Bottleneck takes the following parameters:

•	 cell_num: The ordinal number of Residual Cell this block belongs to

•	 in_channels: Input channels to the first convolution layer
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•	 out_channels: Output channels to all convolutional layers in 

the block

•	 i_downsample: Identity downsample block

    def __init__(

            self,

            cell_num,

            in_channels,

            out_channels,

            i_downsample = None,

            stride = 1

    ):

        super(Bottleneck, self).__init__()

Defining three convolution layers with batch normalization:

        self.conv1 = nn.Conv2d(

            in_channels, out_channels,

            kernel_size = 1, stride = 1, padding = 0

        )

        self.batch_norm1 = nn.BatchNorm2d(out_channels)

        self.conv2 = nn.Conv2d(

            out_channels, out_channels,

            kernel_size = 3, stride = stride, padding = 1

        )

        self.batch_norm2 = nn.BatchNorm2d(out_channels)

        self.conv3 = nn.Conv2d(

            out_channels, self.result_channels_num(out_channels),

            kernel_size = 1, stride = 1, padding = 0

        )

        �self.batch_norm3 = nn.BatchNorm2d(self.result_channels_num(out_

channels))

Chapter 4  Multi-trial Neural Architecture Search



240

Skip connection acts the same for all blocks in Residual Cell because all InputChoice 

mutators share the same label in the Residual Cell:

        self.skip_connection = nn.InputChoice(

            n_candidates = 2,

            n_chosen = 1,

            label = f'bottle_neck_{cell_num}_skip_connection'

        )

Identity downsampling block:

        self.i_downsample = i_downsample

        self.stride = stride

        self.relu = nn.ReLU()

Defining forward method:

    def forward(self, x):

        # x0

        identity = x.clone()

        x = self.relu(self.batch_norm1(self.conv1(x)))

        x = self.relu(self.batch_norm2(self.conv2(x)))

        x = self.conv3(x)

        x = self.batch_norm3(x)

        identity = self.skip_connection([identity, None])

Skipping connection if self.skip_connection returns not None:

        if identity is not None:

            #downsample if needed

            if self.i_downsample is not None:

                identity = self.i_downsample(identity)

            # adding identity

            x += identity
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        x = self.relu(x)

        return x

Since we have defined the Bottleneck block, we can move to the ResNet Model Space 

definition in Listing 4-12.

(Some unimportant code segments are omitted. Complete code is provided in the 

corresponding file: ch4/retiarii/cifar_10_resnet/res_net_model_space.py.)

Importing modules:

Listing 4-12.  ResNet NAS Model Space

from typing import Iterator

import nni.retiarii.nn.pytorch as nn

from nni.retiarii import model_wrapper

from torch.nn import Parameter

from ch4.retiarii.cifar_10_resnet.bottle_neck import Bottleneck

Don’t forget to annotate Model Space with @model_wrapper:

@model_wrapper

class ResNetModelSpace(nn.Module):

Global model constants:

    # classification classes

    num_classes = 10

    # input channels for RGB image

    in_channels = 3

    # ResNet Channel constant

    channels = 64

    def __init__(self):

        super().__init__()

Choosing ReLU as a global activation function:

        self.relu = nn.ReLU()
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Entry point convolution layer with batch normalization:

        self.conv1 = nn.Conv2d(

            in_channels = self.in_channels,

            out_channels = self.channels,

            kernel_size = 7,

            stride = 2,

            padding = 3,

            bias = False

        )

        self.batch_norm1 = nn.BatchNorm2d(64)

MaxPool layer with the following hyperparameter list [2, 3]:

        pool_size = nn.ValueChoice([2, 3], label = 'pool_size')

        �self.max_pool = nn.MaxPool2d(kernel_size = pool_size, stride = 2, 

padding = 1)

Constructing Residual Cell sequence with Repeat mutator (from two to five cells):

        self.res_cells = nn.Repeat(

            ResNetModelSpace.residual_cell_builder(),

            depth = (2, 5), label = 'res_cells_repeat'

        )

Constructing Fully Connected sequence with two linear layers:

        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))

        self.fc1_input_dim = None

        self.fc1_output_dim = nn.ValueChoice(

            [256, 512],

            label = 'fc1_output_dim'

        )

        self._fc1 = None

        self.fc2 = nn.Linear(

            in_features = self.fc1_output_dim,

            out_features = self.num_classes

        )
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Defining forward method:

    def forward(self, x):

        x = self.relu(self.batch_norm1(self.conv1(x)))

        x = self.max_pool(x)

        x = self.res_cells(x)

        x = self.avg_pool(x)

        x = x.reshape(x.shape[0], -1)

        if not self.fc1_input_dim:

            self.fc1_input_dim = x.shape[1]

        x = self.relu(self.fc1(x))

        x = self.fc2(x)

        return x

The following method is used to construct Residual Cells for the Repeat mutator:

    @classmethod

    def residual_cell_builder(cls):

        def create_cell(cell_num):

Defining Residual Cell parameters:

            # planes sequence: 64, 128, 256, 512,...

            planes = 64 * pow(2, cell_num)

            # stride sequence: 1, 2, 2, 2,...

            stride = max(1 + cell_num, 2)

Number of Bottleneck blocks in the Residual Cell:

            # block sequence: 3, 4, 5, 5,...

            blocks = max(3 + cell_num, 5)

            downsample = None

Placeholder for Bottleneck blocks:

            layers = []
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Constructing downsample identity block if needed:

            �if stride != 1 or cls.channels != Bottleneck.result_channels_

num(planes):

                downsample = nn.Sequential(

                    nn.Conv2d(

                        in_channels = cls.channels,

                        �out_channels = Bottleneck.result_channels_

num(planes),

                        kernel_size = 1,

                        stride = stride

                    ),

                    nn.BatchNorm2d(

                        num_features = Bottleneck.result_channels_num(planes)

                    )

                )

            layers.append(

                Bottleneck(

                    cell_num = cell_num,

                    in_channels = cls.channels,

                    out_channels = planes,

                    i_downsample = downsample,

                    stride = stride

                )

            )

            cls.channels = Bottleneck.result_channels_num(planes)

Generating sequence of Bottleneck blocks:

            for i in range(blocks - 1):

                layers.append(

                    Bottleneck(

                        cell_num = cell_num,

                        in_channels = cls.channels,

                        out_channels = planes

                    )
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                )

            return nn.Sequential(*layers)

        return create_cell

Phew. It was not easy to follow the definition of ResNet Model Space if you are not 

familiar with ResNet yet. Anyway, don’t forget that NAS treats the neural network as Data 

Flow Graph, and it tries to find the optimal combination of nodes and connections in 

the Model Space we constructed in Figure 4-23. Even if some deep learning concepts 

are not familiar to you yet, try to treat the NAS as the search for the optimal subgraph in 

supergraph space.

ResNet model evaluator is a classical neural network train–test algorithm. You can 

examine its code here: ch4/retiarii/cifar_10_resnet/eval.py. ResNet NAS Experiment 

script does not differ too much from LeNet NAS, and I don’t provide its code in the 

book. Please refer to the script file: ch4/retiarii/cifar_10_resnet/run_cifar10_resnet_

experiment.py.

The experiment can be run as follows:

$ python3 ch4/retiarii/cifar_10_resnet/run_cifar10_resnet_experiment.py

Note  Duration ~ 60 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

The best model shows 0.957 accuracy on test dataset. That is not perfect, but a much 

better result than LeNet NAS produced (0.84). The best neural network architecture has 

the following parameters:

{

  "pool_size": 2,

  "res_cells_repeat": 5,

  "bottle_neck_0_skip_connection": 1,

  "bottle_neck_1_skip_connection": 0,

  "bottle_neck_2_skip_connection": 0,

  "bottle_neck_3_skip_connection": 0,

  "bottle_neck_4_skip_connection": 0,

  "fc1_output_dim": 512

}
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These parameters mean that the best model has the sequence of five Residual Cells: 

the first cell is not using the skipping connection technique, and the others use it. This 

is a predictable result because usually skipping connection technique raises neural 

network performance.

In this section, we have achieved a great result! CIFAR-10 is a highly complex 

computer vision problem, and even large, sophisticated neural networks cannot 

reach high accuracy with this dataset. Table 4-2 compares the architecture we have 

constructed in this section with other common architectures.

Table 4-2.  Rating of the best architectures for CIFAR-10

Rank Architecture Accuracy

79 AutoDropout 96.8

96 Wide ResNet 96.11

- Multi-trial NAS ResNet Result 95.7

104 SimpleNetv1 95.51

108 MomentumNet 95.18

116 VGG-19 with GradInit 94.71

128 Tree+Max-Avg pooling 94

For more detailed information concerning architecture performance on the 

CIFAR-10 problem, please refer to https://paperswithcode.com/sota/image-

classification-on-cifar-10.

�Classic Neural Architecture Search (TensorFlow)
Classic NAS implements the Multi-trial NAS approach. Evaluator takes a model from 

Model Space and evaluates it separately. Last valid documentation regarding Classic 

NAS with NNI can be found here: https://nni.readthedocs.io/en/v2.2/nas.

html. NNI currently supports Classic NAS but is deprecating it in favor of the Retiarii 

framework. The procedure of Classic NAS algorithms is similar to hyperparameter 

tuning. Users use nnictl to start experiments, and each model runs as a trial. The 

difference is that the search space file is automatically generated from the Model Space 

by running nnictl ss_gen.
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The main logical entities of Classic NAS are Base Model, Mutator, Search Space, Trial, 

and Search Strategy. Let’s study each of them by applying NAS algorithm to the classical 

MNIST problem.

�Base Model
Every Neural Architecture Search starts with defining a Base Model. The Base Model is a 

neural network that acts as a starting point for new architectures. The Base Model can be 

very simple or very complex. The researcher chooses the model that is most suitable as a 

baseline.

Let’s examine the classic LeNet model for the MNIST problem in Listing 4-13.

Listing 4-13.  Base Model. ch4/classic/base_model.py

class LeNetModel(Model):

Base Model layers:

    def __init__(self):

        super().__init__()

        self.conv1 = Conv2D(6, 3, padding = 'same', activation = 'relu')

        self.pool = MaxPool2D(2)

        self.conv2 = Conv2D(16, 3, padding = 'same', activation = 'relu')

        self.bn = BatchNormalization()

        self.gap = AveragePooling2D(2)

        self.fc1 = Dense(120, activation = 'relu')

        self.fc2 = Dense(84, activation = 'relu')

        self.fc3 = Dense(10)

Feed forward:

    def call(self, x):

        batch_size = x.shape[0]

        x = self.conv1(x)

        x = self.pool(x)

        x = self.conv2(x)

Chapter 4  Multi-trial Neural Architecture Search



248

        x = self.pool(self.bn(x))

        x = self.gap(x)

        x = tf.reshape(x, [batch_size, -1])

        x = self.fc1(x)

        x = self.fc2(x)

        x = self.fc3(x)

        return x

The model described in Listing 4-13 will serve as a piece of clay for new 

architectures.

�Mutators
Mutator transforms the Base Model into a new one. A set of mutators allow defining a 

search space for the NAS. Classic NNI NAS provides two mutators: LayerChoice and 

InputChoice. LayerChoice mutator forms the candidate layers for a layer placeholder. 

One of the candidates is tried in the exploration process. InputChoice tries different 

connections. It takes several tensors and chooses n_chosen tensors from them.

You can learn more about LayerChoice and InputChoice mutators in the subsection 

“Mutators” under the section “Neural Architecture Search Using Retiarii (PyTorch).” 

We can apply LayerChoice and InputChoice mutators to the Base Model in the 

following way.

Listing 4-14.  LeNet Model Space. ch4/classic/model.py

class LeNetModelSpace(Model):

    def __init__(self):

        super().__init__()

We try three different convolution layers for the conv1 placeholder:

        self.conv1 = LayerChoice([

            Conv2D(6, 3, padding = 'same', activation = 'relu'),

            Conv2D(6, 5, padding = 'same', activation = 'relu'),

            Conv2D(6, 7, padding = 'same', activation = 'relu'),

        ], key = 'conv1')
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We try two different pooling layers for the pool placeholder:

        self.pool = LayerChoice([

            MaxPool2D(2),

            MaxPool2D(3)],

            key = 'pool'

        )

We try three different convolution layers for the conv2 placeholder:

        self.conv2 = LayerChoice([

            Conv2D(16, 3, padding = 'same', activation = 'relu'),

            Conv2D(16, 5, padding = 'same', activation = 'relu'),

            Conv2D(16, 7, padding = 'same', activation = 'relu'),

        ], key = 'conv2')

        self.conv3 = Conv2D(16, 1)

We add skip connection technique:

        self.skip_connect = InputChoice(

            n_candidates = 2,

            n_chosen = 1,

            key = 'skip_connect'

        )

        self.bn = BatchNormalization()

        self.gap = AveragePooling2D(2)

        self.fc1 = Dense(120, activation = 'relu')

We add two candidates for fc1 placeholder:

        self.fc2 = LayerChoice([

            Dense(84, activation = 'relu'),

            Layer()

        ], key = 'fc2')

        self.fc3 = Dense(10)

Figure 4-24 demonstrates the set of all possible architectures described by 

Listing 4-14.
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Figure 4-24.  Set of all possible architectures

We see that each mutator adds variance to the Base Model.

�Trial
NAS Trial means the same as the Trial in the HPO context. It initializes the model, trains 

it, tests it, and returns model accuracy. There is only one new feature: you must use the 

get_and_apply_next_architecture method from nn.algorithms.nas.tensorflow.

classic_nas package to initialize the model. Listing 4-15 provides the NAS Trial.

(Full code is provided in the corresponding file: ch4/classic/trial.py.)
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Listing 4-15.  NAS Trial.

    net = LeNetModelSpace()

    get_and_apply_next_architecture(net)

    train_model(net, dataset_train, optimizer, epochs)

    acc = test_model(net, dataset_test)

    nni.report_final_result(acc.numpy())

�Search Space
After the Trial script is defined, you should generate the search space JSON file manually 

using the following command:

$ nnictl ss_gen --trial_command="python3 trial.py" --trial_dir=ch4/classic 

--file=ch4/classic/search_space.json

The preceding command generates the file shown in Listing 4-16.

Listing 4-16.  NAS search space

{

  "conv1": {

    "_type": "layer_choice",

    "_value": ["0", "1", "2"]

  },

  "conv2": {

    "_type": "layer_choice",

    "_value": ["0", "1", "2"]

  },

  "fc2": {

    "_type": "layer_choice",

    "_value": ["0", "1"]

  },

  "pool": {

    "_type": "layer_choice",

    "_value": ["0", "1"]

  },
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  "skip_connect": {

    "_type": "input_choice",

    "_value": {

      "candidates": ["",""],

      "n_chosen": 1

    }

  }

}

As you can see, NNI Classic NAS implementation is pretty close to HPO 

implementation. The search space file is a list of all possible neural architecture choices.

�Search Strategy
Classic NAS supports the following Search Strategies:

•	 Random Search

•	 PPO Tuner: Reinforcement Learning Tuner based on Proximal Policy 

Optimization algorithm

For more information about these tuners, you can refer to the subsection 

“Exploration Strategies” under the section “Neural Architecture Search Using Retiarii 

(PyTorch).”

�Experiment
The last thing left to do is to define the experiment configuration. Experiment 

configuration is defined in Listing 4-17.

Listing 4-17.  NAS configuration file

experimentName: example_mnist

trialConcurrency: 1

maxTrialNum: 100

trainingServicePlatform: local

searchSpacePath: search_space.json
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tuner:

  builtinTunerName: PPOTuner

  classArgs:

    optimize_mode: maximize

trial:

  command: python3 trial.py

And now, we can start the experiment with the following command:

$ nnictl create --config=ch4/classic/config.yml

Note  Duration ~ 2 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

Experiment returns the best accuracy 0.9923 on test dataset, with the following 

parameter set:

conv1: 2

pool: 0

conv2: 0

fc2: 0

skip_connect: 0

The preceding parameters can be interpreted as the following neural architecture:

self.conv1 = LayerChoice([

    Conv2D(6, 3, ...),

    Conv2D(6, 5, ...),

    Conv2D(6, 7, ...), # <- 2

], key = 'conv1')

self.pool = LayerChoice([

    MaxPool2D(2), # <- 0

    MaxPool2D(3)],

    key = 'pool'

)
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self.conv2 = LayerChoice([

    Conv2D(16, 3, ...), # <- 0

    Conv2D(16, 5, ...),

    Conv2D(16, 7, ...),

], key = 'conv2')

self.fc2 = LayerChoice([

    Dense(84, activation = 'relu'), # <- 0

    Layer()

], key = 'fc2')

x0 = self.skip_connect([

    x0, # <- 0

    None]

)

The best neural architecture is shown in Figure 4-25.
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Figure 4-25.  Best neural architecture

Classic NAS does not differ too much from the HPO approach. Indeed, we could build 

the same experiment with layer and design hyperparameter search. We made a close trick 

in Chapter 2, in the section “From LeNet to AlexNet.” Neural Architecture Search has made 

great strides lately, and Classic NAS cannot support new research ideas. In any case, you 

can still use Classic NAS and get meaningful results by searching for new solutions.
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�Summary
Multi-trial Neural Architecture Search using Retiarii and classic approaches offers 

clear and elegant solutions for searching robust neural architectures. Many meaningful 

results could be achieved using Multi-trial NAS. But this approach has one very serious 

drawback. It takes too much time. Indeed, complex models and massive datasets need 

too much time to train, and the Model Space can contain millions of model samples. 

Even the most advanced Exploration Strategy can take too much time to converge to 

some suboptimal neural architecture. But the time problem has a solution called One-

shot NAS, and we will explore this method in the next chapter.
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CHAPTER 5

One-Shot Neural 
Architecture Search
In the previous chapter, we explored Multi-trial Neural Architecture Search, which is a 

very promising approach. And the reader might wonder why Multi-trial NAS is called 

that way. Are there any other non-Multi-trial NAS approaches, and is it really possible 

to search for the optimal neural network architecture in some other way without trying 

it? It looks pretty natural that the only way to find the optimal solution is to try different 

elements in the search space. In fact, it turns out that this is not entirely true. There is an 

approach that allows you to find the best architecture by training some Supernet. And 

this approach is called One-shot Neural Architecture Search. As the name “one-shot” 

implies, this approach involves only one try or shot. Of course, this “shot” is much longer 

than single neural network training, but nevertheless, it saves a lot of time.

In this chapter, we will study what One-shot NAS is and how to design architectures 

for this approach. We will examine two popular One-shot algorithms: Efficient Neural 
Architecture Search via Parameter Sharing (ENAS) and Differentiable Architecture 
Search (DARTS). Of course, we will apply these algorithms to solve practical problems.

NNI 2.7 version (which is used in this book) has ENAS algorithm implementation 

for the TensorFlow framework, but it doesn’t have one for the DARTS algorithm. Anyway, 

ENAS algorithm is one of the most popular and efficient One-shot NAS implementations, 

so TensorFlow users shouldn’t get too frustrated.

�One-Shot NAS in Action
Interest in automating neural network architecture design is growing, but the classical 

Multi-trial NAS approach is too computationally expensive, requiring thousands and 

millions of different architectures to be trained from scratch. This fact, unfortunately, 

https://doi.org/10.1007/978-1-4842-8149-9_5
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makes Multi-trial NAS not applicable in practice. Indeed, some Multi-trial experiments 

can take weeks or months on the most modern computing resources. A new One-

shot NAS approach has been proposed to address this weakness of Multi-trial 

architecture search.

The best way to introduce One-shot NAS is to provide an example. Let’s say we are 

looking for the optimal architecture for the MNIST problem. And we have the Model 

Space shown in Figure 5-1.

Figure 5-1.  Model Space for MNIST problem

Figure 5-1 shows the Model Space with two mutable layers. Each mutable layer 

has the following choices: Conv 1×1, Conv 3×3, and Conv 5×5. In a classic Multi-shot 

scenario, we would perform 3×3=9 trials for each combination of parameters and pick 

the best one. While the One-shot NAS approach follows another technique, we create 

one Supernet that merges or reduces the output of each mutable layer and train the 

resulting neural network only once. Figure 5-2 demonstrates this Supernet.
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Figure 5-2.  Supernet for MNIST problem

After training the Supernet, we evaluate it by activating each combination of layers 

and zeroing out other layers. Figure 5-3 illustrates this concept.
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Figure 5-3.  Supernet for MNIST problem

And finally, we pick the combination which demonstrated the best performance. 

This combination represents the result of the One-shot NAS algorithm. For example, if a 

combination (Conv 5×5, Conv 5×5) showed the best accuracy, then our target network 

design is Conv 5×5 → Conv 5×5 → Linear → Linear.

Let’s summarize what exactly we did during the One-shot NAS algorithm:

•	 We created a single Supernet derived from Model Space.

•	 We trained it.

•	 We evaluated it nine times, activating different layers in turn.

•	 We picked the best neural design for the problem.

The main benefit we have here is that we trained Supernet only once instead of 

training each of nine candidate networks! It speeds up the whole neural architecture 

search dramatically, because the network training is the longest part of NAS process.

A reader may have a fair question: “But wait! We trained a single Supernet network. 

All candidate layers learned to work together! But then we decided to break it into different 

parts, leaving the same weights. This is nonsense!” I agree. This is a very counterintuitive 

concept. Indeed, all layers were trained together, and they learned to complement and 

help each other in solving the problem. Surely you can’t just throw out some layers from 

a neural network searching for the best architecture. But the most fantastic thing about 

One-shot NAS is that you can! There is still no sufficient mathematical basis for this 
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approach, but it works in practice. Let’s implement this approach in practice using the 

example we considered earlier. In this section, we will not be using the NNI toolkit. Here, 

our goal is to get an intuition about the One-shot NAS approach.

To begin with, we will make a vanilla Multi-trial NAS. Listing 5-1 (TensorFlow 

implementation) and Listing 5-2 (PyTorch implementation) implement the model 

shown in Figure 5-1.

We import necessary modules:

Listing 5-1.  TensorFlow implementation. Model Space. ch5/naive_one_shot_

nas/tf/tf_lenet_multi_model.py

from tensorflow.keras import Model

from tensorflow.keras.layers import Dense, Flatten, MaxPool2D

from ch5.naive_one_shot_nas.tf.tf_ops import create_conv

The following model accepts two parameters, kernel1 and kernel2, that define the 

conv1 and conv2 layers:

class TfLeNetMultiTrialModel(Model):

    def __init__(self, kernel1, kernel2):

        super().__init__()

        self.conv1 = create_conv(kernel1, filter = 16)

        self.pool1 = MaxPool2D(pool_size = 2)

        self.conv2 = create_conv(kernel2, filter = 32)

        self.pool2 = MaxPool2D(pool_size = 2)

        self.flatten = Flatten()

        self.fc1 = Dense(128, 'relu')

        self.fc2 = Dense(10, 'softmax')

    def call(self, x, **kwargs):

        x = self.conv1(x)

        x = self.pool1(x)

        x = self.conv2(x)

        x = self.pool2(x)

        x = self.flatten(x)

        x = self.fc1(x)

        return self.fc2(x)
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We import necessary modules:

Listing 5-2.  PyTorch implementation. Model Space. ch5/naive_one_shot_nas/

pt/pt_lenet_multi_model.py

import torch

import torch.nn as nn

import torch.nn.functional as F

from ch5.naive_one_shot_nas.pt.pt_ops import create_conv

The following model below accepts two parameters, kernel1 and kernel2, that 

define the conv1 and conv2 layers:

class PtLeNetMultiTrialModel(nn.Module):

    def __init__(self, kernel1, kernel2):

        super(PtLeNetMultiTrialModel, self).__init__()

        self.conv1 = create_conv(kernel1, in_channels = 1, out_channels = 16)

        self.conv2 = create_conv(kernel2, in_channels = 16, out_channels = 32)

        self.flat = nn.Flatten()

        self.fc1 = nn.Linear(1568, 128)

        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):

        x = torch.relu(self.conv1(x))

        x = F.max_pool2d(x, 2, 2)

        x = torch.relu(self.conv2(x))

        x = F.max_pool2d(x, 2, 2)

        x = self.flat(x)

        x = torch.relu(self.fc1(x))

        x = self.fc2(x)

        return F.log_softmax(x, dim = 1)

And now, let’s execute Multi-trial NAS iterating through the various kernel_size 

parameters (kernel1: [1, 3, 5], kernel2: [1, 3, 5]) using the script in Listing 5-3 

(TensorFlow implementation) and Listing 5-4 (PyTorch implementation).
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We import necessary modules:

Listing 5-3.  TensorFlow implementation. Multi-trial NAS. ch5/naive_one_shot_

nas/tf/ms_search.py

from ch5.naive_one_shot_nas.tf.tf_lenet_multi_model import 

TfLeNetMultiTrialModel

from ch5.naive_one_shot_nas.tf.tf_train import train, test

Defining the search space:

kernel1_choices = [1, 3, 5]

kernel2_choices = [1, 3, 5]

results = {}

Performing Multi-trial search:

for k1 in kernel1_choices:

    for k2 in kernel2_choices:

        # Trial

        model = TfLeNetMultiTrialModel(k1, k2)

        train(model)

        accuracy = test(model)

        results[(k1, k2)] = accuracy

Displaying results:

print('=======')

print('Results:')

for k, v in results.items():

    print(f'Conv1 {k[0]}x{k[0]}, Conv2: {k[1]}x{k[1]} : {v}')

We import necessary modules:

Listing 5-4.  PyTorch implementation. Multi-trial NAS. ch5/naive_one_shot_ 

nas/pt/ms_search.py

from ch5.naive_one_shot_nas.pt.pt_lenet_multi_model import 

PtLeNetMultiTrialModel

from ch5.naive_one_shot_nas.pt.pt_train import train_model, test_model
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Defining the search space:

kernel1_choices = [1, 3, 5]

kernel2_choices = [1, 3, 5]

results = {}

Performing Multi-trial search:

for k1 in kernel1_choices:

    for k2 in kernel2_choices:

        # Trial

        model = PtLeNetMultiTrialModel(k1, k2)

        train_model(model)

        accuracy = test_model(model)

        results[(k1, k2)] = accuracy

Defining the search space:

print('=======')

print('Results:')

for k, v in results.items():

    print(f'Conv1 {k[0]}x{k[0]}, Conv2: {k[1]}x{k[1]} : {v}')

The results of the Multi-trial NAS we performed are listed in Table 5-1.

Table 5-1.  Multi-trial NAS results

Trial Conv1 Conv2 Accuracy

1 Conv1×1 Conv1×1 0.9446

2 Conv1×1 Conv3×3 0.9849

3 Conv1×1 Conv5×5 0.9864

4 Conv3×3 Conv3×3 0.9851

5 Conv3×3 Conv3×3 0.9881

6 Conv3×3 Conv5×5 0.9909

7 Conv5×5 Conv1×1 0.9872

8 Conv5×5 Conv3×3 0.9901

9 Conv5×5 Conv5×5 0.9917
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According to Table 5-1, the best candidate is (Conv5×5, Conv5×5). Well, we tried 

every neural design candidate and found the most suitable one for the MNIST problem. 

Of course, the Multi-trial NAS we implemented earlier is quite simple, but that’s how all 

Multi-trial approaches act in general.

But for now, let’s try to get the same result using the One-shot NAS approach! 

First, we create the Supernet model depicted in Figure 5-2 (in Listing 5-5 [TensorFlow 

implementation] and Listing 5-6 [PyTorch implementation]).

We import necessary modules:

Listing 5-5.  TensorFlow implementation. Supernet. ch5/naive_one_shot_nas/

tf/tf_lenet_supernet.py

from tensorflow.keras import Model

from tensorflow.keras.layers import Dense, Flatten, MaxPool2D

from ch5.naive_one_shot_nas.tf.tf_ops import create_conv

TfLeNetNaiveSupernet implements Supernet depicted in Figure 5-2:

class TfLeNetNaiveSupernet(Model):

    def __init__(self):

        super().__init__()

We define each candidate for conv1 and conv2 layers:

        self.conv1_1 = create_conv(1, 16)

        self.conv1_3 = create_conv(3, 16)

        self.conv1_5 = create_conv(5, 16)

        self.conv2_1 = create_conv(1, 32)

        self.conv2_3 = create_conv(3, 32)

        self.conv2_5 = create_conv(5, 32)

Next are the other Supernet layers:

        self.pool1 = MaxPool2D(pool_size = 2)

        self.pool2 = MaxPool2D(pool_size = 2)

        self.flatten = Flatten()

        self.fc1 = Dense(128, 'relu')

        self.fc2 = Dense(10, 'softmax')
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call method accepts mask parameter, which activates candidate layer in a sum merge 

operation. The mask parameter is not passed in the training mode, and all candidates 

are summed:

x = 1×conv1_1(x) + 1×conv1_3(x) + 1×conv1_5(x)

x = 1×conv2_1(x) + 1×conv2_3(x) + 1×conv2_5(x).

But in evaluation mode, we pass mask parameter and activate only particular layers:

x = 0×conv1_1(x) + 1×conv1_3(x) + 0×conv1_5(x)

x = 0×conv2_1(x) + 0×conv2_3(x) + 1×conv2_5(x):

    def call(self, x, mask = None):

        # Sum all in training mode

        if mask is None:

            mask = [[1, 1, 1], [1, 1, 1]]

        x = mask[0][0] * self.conv1_1(x) +\

            mask[0][1] * self.conv1_3(x) +\

            mask[0][2] * self.conv1_5(x)

        x = self.pool1(x)

        x = mask[1][0] * self.conv2_1(x) +\

            mask[1][1] * self.conv2_3(x) +\

            mask[1][2] * self.conv2_5(x)

        x = self.pool2(x)

        x = self.flatten(x)

        x = self.fc1(x)

        return self.fc2(x)

We import necessary modules:

Listing 5-6.  PyTorch implementation. Supernet. ch5/naive_one_shot_nas/pt/

pt_lenet_supernet.py

import torch

import torch.nn as nn

import torch.nn.functional as F

from ch5.naive_one_shot_nas.pt.pt_ops import create_conv
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PtLeNetNaiveSupernet implements Supernet depicted in Figure 5-2:

class PtLeNetNaiveSupernet (nn.Module):

    def __init__(self):

        super(PtLeNetNaiveSupernet, self).__init__()

We define each candidate for conv1 and conv2 layers:

        self.conv1_1 = create_conv(1, 1, 16)

        self.conv1_3 = create_conv(3, 1, 16)

        self.conv1_5 = create_conv(5, 1, 16)

        self.conv2_1 = create_conv(1, 16, 32)

        self.conv2_3 = create_conv(3, 16, 32)

        self.conv2_5 = create_conv(5, 16, 32)

Next are the other Supernet layers:

        self.flat = nn.Flatten()

        self.fc1 = nn.Linear(1568, 128)

        self.fc2 = nn.Linear(128, 10)

forward method accepts mask parameter, which activates candidate layer in a 

sum merge operation. The mask parameter is not passed in the training mode, and all 

candidates are summed:

x = 1×conv1_1(x) + 1×conv1_3(x) + 1×conv1_5(x)

x = 1×conv2_1(x) + 1×conv2_3(x) + 1×conv2_5(x).

But in evaluation mode, we pass mask parameter and activate only particular layers:

x = 0×conv1_1(x) + 1×conv1_3(x) + 0×conv1_5(x)

x = 0×conv2_1(x) + 0×conv2_3(x) + 1×conv2_5(x):

    def forward(self, x, mask = None):

        # Sum all in training mode

        if mask is None:

            mask = [[1, 1, 1], [1, 1, 1]]

        x = mask[0][0] * self.conv1_1(x) +\

            mask[0][1] * self.conv1_3(x) +\

            mask[0][2] * self.conv1_5(x)
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        x = torch.relu(x)

        x = F.max_pool2d(x, 2, 2)

        x = mask[1][0] * self.conv2_1(x) +\

            mask[1][1] * self.conv2_3(x) +\

            mask[1][2] * self.conv2_5(x)

        x = torch.relu(x)

        x = F.max_pool2d(x, 2, 2)

        x = self.flat(x)

        x = torch.relu(self.fc1(x))

        x = self.fc2(x)

        return F.log_softmax(x, dim = 1)

Next, we train the Supernet and evaluate different candidate layer combinations in 

Listing 5-7 (TensorFlow implementation) and Listing 5-8 (PyTorch implementation).

We import necessary modules:

Listing 5-7.  TensorFlow implementation. One-shot NAS. ch5/naive_one_shot_

nas/tf/os_search.py

import tensorflow as tf

from sklearn.metrics import accuracy_score

from ch5.datasets import mnist_dataset

from ch5.naive_one_shot_nas.tf.tf_lenet_supernet import 

TfLeNetNaiveSupernet

from ch5.naive_one_shot_nas.tf.tf_train import train

Initializing Supernet:

model = TfLeNetNaiveSupernet()

Training Supernet:

train(model)

Loading test dataset:

_, (x, y) = mnist_dataset()
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Evaluating Supernet activating each candidate:

kernel1_choices = [1, 3, 5]

kernel2_choices = [1, 3, 5]

results = {}

for m1 in range(0, len(kernel1_choices)):

    for m2 in range(0, len(kernel2_choices)):

        # activation mask

        mask = [[0, 0, 0], [0, 0, 0]]

        # activating conv1 and conv2 layers

        mask[0][m1] = 1

        mask[1][m2] = 1

        # calculating accuracy

        output = model(x, mask = mask)

        predict = tf.argmax(output, axis = 1)

        accuracy = round(accuracy_score(predict, y), 4)

        results[(kernel1_choices[m1], kernel2_choices[m2])] = accuracy

Displaying results:

print('=======')

print('Results:')

for k, v in results.items():

    print(f'Conv1 {k[0]}x{k[0]}, Conv2: {k[1]}x{k[1]} : {v}')

We import necessary modules:

Listing 5-8.  PyTorch implementation. One-shot NAS. ch5/naive_one_shot_nas/

pt/os_search.py

import torch

from sklearn.metrics import accuracy_score

from ch5.datasets import mnist_dataset

from ch5.naive_one_shot_nas.pt.pt_lenet_supernet import 

PtLeNetNaiveSupernet

from ch5.naive_one_shot_nas.pt.pt_train import train_model
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Initializing Supernet:

model = PtLeNetNaiveSupernet()

Training Supernet:

train_model(model)

Loading test dataset:

_, (x, y) = mnist_dataset()

x = torch.from_numpy(x).float()

y = torch.from_numpy(y).long()

x = torch.permute(x, (0, 3, 1, 2))

Evaluating Supernet activating each candidate:

model.eval()

kernel1_choices = [1, 3, 5]

kernel2_choices = [1, 3, 5]

results = {}

for m1 in range(0, len(kernel1_choices)):

    for m2 in range(0, len(kernel2_choices)):

        # activation mask

        mask = [[0, 0, 0], [0, 0, 0]]

        # activating conv1 and conv2 layers

        mask[0][m1] = 1

        mask[1][m2] = 1

        # calculating accuracy

        output = model(x, mask)

        predict = output.argmax(dim = 1, keepdim = True)

        accuracy = round(accuracy_score(predict, y), 4)

        results[(kernel1_choices[m1], kernel2_choices[m2])] = accuracy
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Displaying results:

print('=======')

print('Results:')

for k, v in results.items():

    print(f'Conv1 {k[0]}x{k[0]}, Conv2: {k[1]}x{k[1]} : {v}')

The results of the One-shot NAS are listed in Table 5-2.

Table 5-2.  One-shot NAS results

Trial Conv1 Conv2 Accuracy

1 Conv1×1 Conv1×1 0.2343

2 Conv1×1 Conv3×3 0.1789

3 Conv1×1 Conv5×5 0.2127

4 Conv3×3 Conv3×3 0.2755

5 Conv3×3 Conv3×3 0.8515

6 Conv3×3 Conv5×5 0.8786

7 Conv5×5 Conv1×1 0.3486

8 Conv5×5 Conv3×3 0.8882

9 Conv5×5 Conv5×5 0.9001

The best neural architecture found by One-shot NAS is (Conv 5×5, Conv 5×5), 

which is exactly the same as the result of Multi-trial NAS. Incredible, isn’t it? We found 

the same result in a much shorter time!

Note T he results presented in Table 5-2 are only needed to rank various 
combinations of architectures to pick the best one. These results do not 
characterize the accuracy of the corresponding combination. One-shot models are 
typically only used to rank architectures in the Model Space. The best-performing 
architectures are retrained from scratch after the search is completed.
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Intuitively, the One-shot NAS approach can be illustrated as follows: during 

Supernet training, the best performing candidate layers play much more significant 

roles in the Data Flow Graph of the Supernet neural network. This fact allows finding 

these candidates by deactivating others during the evaluation process. Figure 5-4 

demonstrates this concept.

Figure 5-4.  Different layer importance in the Supernet

Since we have an intuition about the One-shot NAS approach, we can start 

implementing it using the NNI framework.

�Supernet Architecture
As we saw in the previous section, one of the main concepts in One-shot NAS is the 

Supernet. Supernet is a single neural network that contains all the various neural 

network architectures from the defined Model Space. Supernet is trained once according 

to the One-shot NAS technique, and then the optimal subnet is selected. In Multi-

trial NAS, each Data Flow Graph is tried separately. But One-shot NAS creates a single 

Supernet based on all possible Data Flow Graphs in Model Space.
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NNI creates Model Space for One-shot NAS using LayerChoice and InputChoice 

operations. LayerChoice candidates form a special block in the Supernet. Each 

LayerChoice candidate transforms input tensor, and then their output tensors are 

reduced according to a particular One-shot NAS algorithm. The reduce operation 

can be sum, mean, or any other operation that merges tensors. InputChoice candidate 

tensors are reduced in Supernet in the same way as LayerChoice candidates. Figure 5-5 

demonstrates Model Space constructed with LayerChoice and InputChoice operations.

Figure 5-5.  Model Space

Model Space depicted in Figure 5-5 generates Supernet with reduce operations. 

Figure 5-6 demonstrates Supernet with sum as reduce operations.
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Figure 5-6.  One-shot NAS Supernet

Supernet is trained according to a specific One-shot NAS algorithm. After the 

training, each subnet is evaluated, and the subnetwork with the best accuracy forms the 

target neural architecture. Figure 5-7 demonstrates the evaluation of a specific subnet.
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Figure 5-7.  Subnet Evaluation

One-shot NAS sets a strict restriction on the LayerChoice and InputChoice 

candidates. Each of the candidates must return a tensor of the same size. Otherwise, 

it will be impossible to implement the reduce operation. In the previous section, 

candidates for conv1 layer returned 16×28×28 tensors, and candidates for conv2 layer 

returned 32×14×14 tensors. Figure 5-8 demonstrates this fact.
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Figure 5-8.  Same size tensor outputs

This restriction does not exist in Multi-trial NAS since TensorFlow and PyTorch 

frameworks allowed layer parameters to be calculated depending on the input tensor; 

therefore, LayerChoice candidates could return tensors of various sizes. In the case 

of One-shot NAS, we must be sure that the candidates return tensors of the same size. 

Otherwise, the NAS algorithm fails with an error.

Let’s create our first Model Space for One-shot NAS. It will be a “Hello World” 

model, which we will use to test One-shot NAS algorithms in the next section. We will 

define Model Space for One-shot search using LeNet architecture variations depicted in 

Figure 5-9.
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Figure 5-9.  LeNet One-shot Model Space

NNI implementation for TensorFlow of the Model Space depicted in Figure 5-9 is 

provided in Listing 5-9.

LayerChoice and InputChoice methods are implemented in nni.nas.tensorflow.

mutables package:

Listing 5-9.  TensorFlow implementation. One-shot LeNet NAS. ch5/model/

lenet/tf_lenet.py

from nni.nas.tensorflow.mutables import InputChoice, LayerChoice

Importing tensorflow.keras modules:

from tensorflow.keras import Model

from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPool2D
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Defining helper function creating convolution layer:

def create_conv(kernel, filters):

    return Conv2D(

        filters = filters,

        kernel_size = kernel,

        activation = 'relu',

        padding = 'same'

    )

class TfLeNetSupernet(Model):

    def __init__(self):

        super().__init__()

Setting LayerChoices for conv1 and conv2 layers:

        self.conv1 = LayerChoice([

            create_conv(kernel = 1, filters = 16),  # 0

            create_conv(kernel = 3, filters = 16),  # 1

            create_conv(kernel = 5, filters = 16)  # 2

        ], key = 'conv1')

        self.conv2 = LayerChoice([

            create_conv(kernel = 1, filters = 32),  # 0

            create_conv(kernel = 3, filters = 32),  # 1

            create_conv(kernel = 5, filters = 32)  # 2

        ], key = 'conv2')

        self.pool = MaxPool2D(2)

        self.flat = Flatten()

Setting InputChoice for linear layers:

        self.dm = InputChoice(n_candidates = 2, n_chosen = 1, key = 'dm')

        self.fc11 = Dense(256, activation = 'relu')

        self.fc12 = Dense(10, activation = 'softmax')

        self.fc2 = Dense(10, activation = 'softmax')
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Defining call method:

    def call(self, x):

        x = self.conv1(x)

        x = self.pool(x)

        x = self.conv2(x)

        x = self.pool(x)

        x = self.flat(x)

        # branch 1

        x1 = self.fc12(self.fc11(x))

        # branch 2

        x2 = self.fc2(x)

        # Choosing one of the branches

        x = self.dm([

            x1,  # 0

            x2  # 1

        ])

        return x

NNI implementation for PyTorch of the Model Space depicted in Figure 5-9 is 

provided in Listing 5-10.

LayerChoice and InputChoice methods are implemented in nni.retiarii.nn.pytorch 

package:

Listing 5-10.  PyTorch implementation. One-shot LeNet NAS. ch5/model/lenet/

pt_lenet.py

from nni.retiarii.nn.pytorch import LayerChoice, InputChoice

Importing other modules:

from typing import OrderedDict

import torch.nn as nn

import torch.nn.functional as F
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Defining helper function creating convolution layer:

def create_conv(kernel, in_ch, out_ch):

    return nn.Conv2d(

        in_channels = in_ch,

        out_channels = out_ch,

        kernel_size = kernel,

        padding = int((kernel - 1) / 2)

    )

class PtLeNetSupernet(nn.Module):

    def __init__(self, input_ts = 32):

        super(PtLeNetSupernet, self).__init__()

Setting LayerChoices for conv1 and conv2 layers:

        self.conv1 = LayerChoice(OrderedDict(

            [

                ('conv1x1->16', create_conv(1, 1, 16)),  # 0

                ('conv3x3->16', create_conv(3, 1, 16)),  # 1

                ('conv5x5->16', create_conv(5, 1, 16)),  # 2

            ]

        ), label = 'conv1')

        self.conv2 = LayerChoice(OrderedDict(

            [

                ('conv1x1->32', create_conv(1, 16, 32)),  # 0

                ('conv3x3->32', create_conv(3, 16, 32)),  # 1

                ('conv5x5->32', create_conv(5, 16, 32)),  # 2

            ]

        ), label = 'conv2')

        self.act = nn.ReLU()

        self.flat = nn.Flatten()
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Setting InputChoice for linear layers:

        self.dm = InputChoice(n_candidates = 2, n_chosen = 1, label = 'dm')

        self.fc11 = nn.Linear(input_ts * 8 * 8, 256)

        self.fc12 = nn.Linear(256, 10)

        self.fc2 = nn.Linear(input_ts * 8 * 8, 10)

Defining forward method:

    def forward(self, x):

        x = self.act(self.conv1(x))

        x = F.max_pool2d(x, 2, 2)

        # x.shape = (16, 16, 16)

        x = self.act(self.conv2(x))

        x = F.max_pool2d(x, 2, 2)

        # x.shape = (32, 8, 8)

        x = self.flat(x)

        # branch 1

        x1 = self.act(self.fc11(x))

        x1 = self.act(self.fc12(x1))

        # branch 2

        x2 = self.act(self.fc2(x))

        # Choosing one of the branches

        x = self.dm([

            x1,  # 0

            x2  # 1

        ])

        return F.log_softmax(x, dim = 1)

Since we defined One-shot Model Space using NNI, we can move on to 

implementing advanced One-shot algorithms.
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�One-Shot Algorithms
At the moment, One-shot NAS is a young area and is developing rapidly. Many 

algorithms that implement the One-shot concept are being invented at the moment. 

This section will study two of the most popular One-shot algorithms: Efficient Neural 

Architecture Search (ENAS) and Differentiable Architecture Search (DARTS).

�Efficient Neural Architecture Search (ENAS)
Efficient Neural Architecture Search (ENAS) is a fast and inexpensive approach for 

automatic model design. In ENAS, a controller discovers neural network architectures by 

searching for an optimal subnet within a large Supernet. The controller is trained with 

a policy gradient to select a subnet that maximizes the expected reward on a validation 

set. Meanwhile, the model corresponding to the selected subnet is trained to minimize 

the loss function. Sharing parameters among child models allows ENAS to deliver strong 

empirical performances. It uses much fewer GPU hours than classical Multi-trial NAS 

approaches.

The original paper “Efficient Neural Architecture Search via Parameter Sharing” 

(https://arxiv.org/pdf/1802.03268.pdf) has a lot of formulas and can be too 

complicated. Let’s study the idea of this approach in a more practical way.

One of the key concepts in ENAS is Reinforcement Learning Controller or RL 

Controller or simply Controller. RL Controller contains a neural network θ that learns 

how to extract the most efficient subnets from the Supernet. The main task of the RL 

Controller is to find the optimal subnet in the Supernet, and it is trained according to the 

Reinforcement Learning algorithm. The Controller creates a subnet by defining a binary 

mask, where 1 activates layer and 0 disables it. Figure 5-10 shows how RL Controller 

selects subnet from the Supernet using binary mask.
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Figure 5-10.  RL Controller subnet selection

RL Controller picks a subnet and runs one or several training epochs. The core of the 

ENAS approach is the weight-sharing technique. The same layers in different subnets 

share the same weights. When Controller picks a subnet, it is not being trained from 

scratch; layers share weights that have already been trained. Weight-sharing concept is 

demonstrated in Figure 5-11.
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Figure 5-11.  Weight sharing

The weight-sharing approach allows the Controller to find the best architecture 

with small iterations and without retraining a new subnet from scratch each time. ENAS 

algorithm can be demonstrated using the following pseudo-code:

We initialize a Supernet: S

And load train and validation datasets: train_ds, val_ds

Next, the algorithm initializes ENAS Controller (Controller(S, θ)), where θ denotes 

Controller weights that help choose optimal subnet from S Supernet:

Ctrl = Controller(S, θ)

Main training loop:

for epoch in epochs:

	 1.	 Supernet training loop:

    for batch in batches(train_ds):
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	 i.	 Controller implements stochastic policy, which means that it 

operates with probabilities. The most promising subnet has 

the highest probability to be chosen:

        s ← Ctrl.sample() #picks pseudo-random subnet

	 ii.	 Subnet network is trained once (i.e., only one training 

epoch) on a training batch using weight-sharing technique 

(Figure 5-11):

        train_once(subnet, batch)

	 2.	 Controller training loop. In this loop, Controller learns how to 

find a subnet that gives the highest reward, that is, accuracy on 

validation dataset:

    for batch in batches(val_ds):

	 i.	 Controller chooses subnet and calculates its accuracy on 

validation dataset batch:

        subnet ← Ctrl.sample() #picks pseudo random subnet

        reward = test(subnet, batch)

	 ii.	 Controller collects experience about subnet performance:

        Ctrl.add_experience(reward)

	 3.	 Controller updates its weights θ according to new experience:

    Ctrl.self_update_with_new_experience()

# end of main training loop

After training, Controller returns the best subnet:

Ctrl.best()
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In the algorithm described earlier, the Controller trains various subnets on the 

training dataset and then tests them on the validation dataset. By repeating this process 

many times, the Controller understands which architectures show the best accuracy 

and gradually reduces the exploration process to a limited number of architectures. At 

the end of the training process, the Controller converges to one or several of the best 

architectures.

Let’s see how ENAS works in practice:

	 1.	 Initially, the Controller has no assumptions about subnets, and it 

chooses random subnets for single training (subnet is trained for 

one training epoch only) using the weight-sharing technique as 

depicted in Figure 5-11.

	 2.	 After, Controller generates subnets based on θ weights and 

collects accuracy on the validation dataset.

	 3.	 Based on experience gained in step 2, Controller updates θ values.

Figure 5-12 demonstrates steps 1–3 we described earlier.
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Figure 5-12.  ENAS in action. Initial epoch

Next, Controller chooses the most promising subnets to train using the weight-

sharing technique and tests their accuracy on the validation dataset, as shown in 

Figure 5-13.
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Figure 5-13.  ENAS in action. Middle training

After training Supernet layers separately and updating θ experience, Controller 

converges to some subnet that it considers the best. Figure 5-14 illustrates it.
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Figure 5-14.  ENAS in action. End training

One-shot ENAS algorithm is close to RL Strategy from Multi-trial NAS, but with one 

significant difference. ENAS does not make a complete subnet training cycle but uses 

weight sharing and incremental one-step training. This difference dramatically speeds 

up the process of finding the best architecture.

NNI implements ENAS using the following classes:

•	 PyTorch: nni.retiarii.oneshot.pytorch.enas.EnasTrainer

•	 TensorFlow: nni.algorithms.nas.tensorflow.enas.EnasTrainer
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Table 5-3 shows EnasTrainer parameters.

Table 5-3.  EnasTrainer parameters

Parameter Description

model PyTorch or TensorFlow model to be trained

loss Type: callable

Loss function

metrics Type: callable

Measures model accuracy

reward_function Type: callable

Is used by ENAS Controller to calculate reward. Usually, reward_function 

returns model accuracy

optimizer Type: Optimizer

Optimizer for model training

num_epochs Type: int

Number of epochs planned for training

dataset Type: Dataset

Training dataset

batch_size Type: int, Default: 64

Training batch size

workers Type: int, Default: 4

Workers for data loading

log_frequency Type: int, Default: None

Logging step count

grad_clip Type: float, Default: 5.0

Gradient clipping. Set to 0 to disable

entropy_weight Type: float, Default: 0.0001

Sample entropy loss weight

skip_weight Type: float, Default: 0.8

Skip penalty loss weight

(continued)
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Now let’s move on to the practical application of the ENAS algorithm for the LeNet 

Model Space we defined in the previous section.

�TensorFlow ENAS Implementation
Listing 5-11 demonstrates ENAS application using TensorFlow LeNet Model Space.

Importing modules:

Listing 5-11.  ENAS TensorFlow. ch5/enas/enas_tf_search.py

from tensorflow.keras.losses import Reduction, 

SparseCategoricalCrossentropy

from tensorflow.keras.optimizers import Adam

import ch5.datasets as datasets

from nni.algorithms.nas.tensorflow import enas

from ch5.model.lenet.tf_lenet import TfLeNetSupernet

from ch5.tf_utils import accuracy, reward_accuracy, get_best_model

Initializing LeNetSupernet:

model = TfLeNetSupernet()

Loading datasets:

dataset_train, dataset_valid = datasets.mnist_dataset()

Table 5-3.  (continued)

Parameter Description

baseline_decay Type: float, Default: 0.999

Baseline decay rate. New baseline is calculated as

baseline_decay * baseline_old + reward * (1 - baseline_

decay

ctrl_lr Type: float, Default: 0.00035

Controller learning rate

ctrl_steps_

aggregate

Type: int, Default: 20

Number of steps that will be aggregated into one mini-batch for Controller
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Defining loss function:

loss = SparseCategoricalCrossentropy(

    from_logits = True,

    reduction = Reduction.NONE

)

Defining optimizer:

optimizer = Adam()

ENAS training params:

num_epochs = 10

batch_size = 256

Initializing EnasTrainer:

trainer = enas.EnasTrainer(

    model,

    loss = loss,

    metrics = accuracy,

    reward_function = reward_accuracy,

    optimizer = optimizer,

    batch_size = batch_size,

    num_epochs = num_epochs,

    dataset_train = dataset_train,

    dataset_valid = dataset_valid,

    log_frequency = 10,

    child_steps = 10,

    mutator_steps = 30

)

Launching One-shot search:

trainer.train()

Returning best subnet:

best = get_best_model(trainer.mutator)

print(best)
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Listing 5-11 returns the following best model as the result of ENAS algorithm:

•	 conv1: 1 (Conv3×3)

•	 conv2: 2 (Conv5×5)

•	 dm: 0 (Linear256→Linear10)

�PyTorch ENAS Implementation
Listing 5-12 demonstrates ENAS application using PyTorch LeNet Model Space.

Importing modules:

Listing 5-12.  ENAS PyTorch. ch5/enas/enas_pt_search.py

import torch.nn as nn

from nni.retiarii.oneshot.pytorch.enas import EnasTrainer

from torch.optim.sgd import SGD

import ch5.datasets as datasets

from ch5.model.lenet.pt_lenet import PtLeNetSupernet

from ch5.pt_utils import accuracy, reward_accuracy

Initializing LeNetSupernet:

model = PtLeNetSupernet()

Loading datasets:

dataset_train, dataset_valid = datasets.get_dataset("mnist")

Defining loss function:

criterion = nn.CrossEntropyLoss()

Defining optimizer:

optimizer = SGD(

    model.parameters(), 0.05,

    momentum = 0.9, weight_decay = 1.0E-4

)
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ENAS training params:

batch_size = 256

log_frequency = 50

num_epochs = 10

ctrl_kwargs = {"tanh_constant": 1.1}

Initializing EnasTrainer:

trainer = EnasTrainer(

    model,

    loss = criterion,

    metrics = accuracy,

    reward_function = reward_accuracy,

    optimizer = optimizer,

    batch_size = batch_size,

    num_epochs = num_epochs,

    dataset = dataset_train,

    log_frequency = log_frequency,

    ctrl_kwargs = ctrl_kwargs,

    ctrl_steps_aggregate = 20

)

Launching One-shot search:

trainer.fit()

Returning best subnet:

best_model = trainer.export()

print(best_model)

Listing 5-12 returns the following best model as the result of ENAS algorithm:

•	 conv1: 1 (Conv3×3)

•	 conv2: 1 (Conv3×3)

•	 dm: 0 (Linear256→Linear10)
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ENAS is one of the first One-shot NAS algorithms that made the community rethink 

the whole approach to Neural Architecture Search. But ENAS may seem complicated to 

an inexperienced reader due to the complex internal algorithm and nontrivial tuning. In 

the next section, we’ll study a more elegant One-shot NAS technique.

�Differentiable Architecture Search (DARTS)
From calculus, we know that one of the most efficient ways to find the maxima of a 

continuous differentiable surface is to use derivatives and gradient-based methods. 

Neural networks use gradient descent based on the principle of computing derivatives. 

It would also be very convenient to reduce NAS to a differentiation problem, and the 

DARTS algorithm does that. DARTS algorithm was proposed in the original paper 

“DARTS: Differentiable Architecture Search” (https://arxiv.org/abs/1806.09055).

Using binary masks, ENAS algorithm chooses subnets from the Supernet, but this 

approach is discrete. ENAS Controller jumps from one subnet to another, trying to 

discover the best one. DARTS algorithm makes the search space continuous; it relaxes 

the categorical choice of a particular operation to a softmax over all possible operations:

o′(x) = exp

exp

α
α

i i

ji j

o x( ) ( )
( )∑∑

This means that the DARTS algorithm creates a Supernet derived from Model 

Space with sum reducing, and each choice operation is followed with αi parameter 

that specifies the weight of the operation. This makes the {α} parameter set trainable as 

Supernet weights. At the end of Supernet training, the choices with the highest α values ​​

are chosen as the optimal subnet operations. Figure 5-15 illustrates this concept.
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Figure 5-15.  DARTS operation relaxation

During Supernet training using the DARTS algorithm, inefficient choices tend 

to be zeroed, and the search converges to a single architecture, which is the search 

result. Figure 5-16 visualizes the DARTS algorithm applied to the LeNetSupermodel. It 

gradually relaxes inefficient layers showing the best architecture.
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Figure 5-16.  DARTS in action

NNI 2.7 implements DARTS only for PyTorch framework using the following class: 

nni.retiarii.oneshot.pytorch.DartsTrainer.

Table 5-4 shows DartsTrainer parameters.
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Table 5-4.  DartsTrainer parameters

Parameter Description

model PyTorch model to be trained

loss Type: callable

Loss function

metrics Type: callable

Measures model accuracy

optimizer Type: Optimizer

Optimizer for model training

num_epochs Type: int

Number of epochs planned for training

dataset Type: Dataset

Training dataset

batch_size Type: int, Default: 64

Training batch size

workers Type: int, Default: 4

Workers for data loading

log_frequency Type: int, Default: None

Logging step count

grad_clip Type: float, Default: 5.0

Gradient clipping. Set to 0 to disable

arc_learning_rate Type: float, Default: 0.0001

Learning rate of architecture parameters

Listing 5-13 implements DARTS algorithm using NNI.

Importing modules:

Listing 5-13.  DARTS PyTorch. ch5/darts/darts_pt_search.py

import torch

import torch.nn as nn

import ch5.datasets as datasets

from nni.retiarii.oneshot.pytorch import DartsTrainer
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from ch5.model.lenet.pt_lenet import PtLeNetSupernet

from ch5.pt_utils import accuracy

Initializing LeNetSupernet:

model = PtLeNetSupernet()

Loading datasets:

dataset_train, dataset_valid = datasets.get_dataset("mnist")

Defining loss function:

criterion = nn.CrossEntropyLoss()

Defining optimizer:

optim = torch.optim.SGD(

    model.parameters(), 0.025,

    momentum = 0.9, weight_decay = 3.0E-4

)

ENAS training params:

num_epochs = 10

batch_size = 256

metrics = accuracy

Initializing DartsTrainer:

trainer = DartsTrainer(

    model = model,

    loss = criterion,

    metrics = metrics,

    optimizer = optim,

    num_epochs = num_epochs,

    dataset = dataset_train,

    batch_size = batch_size,

    log_frequency = 10,

    unrolled = False

)
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Launching One-shot search:

trainer.fit()

Returning best subnet:

best_architecture = trainer.export()

print('Best architecture:', best_architecture)

Listing 5-13 returns the following best model as the result of DARTS algorithm:

•	 conv1: conv5x5->16

•	 conv2: conv5x5->32

•	 dm: 1 (Linear10)

DARTS is a clear and straightforward One-shot algorithm. It has an intuitive logic 

and is easy to tune. But DARTS requires more memory than ENAS because DARTS trains 

the whole Supernet, while ENAS trains the various subnets only. Anyway, DARTS is a 

good choice to implement Neural Architecture Search.

�GeneralSupernet Solving CIFAR-10
We considered the application of One-shot algorithms on the simplest LeNet Model 

Space solving the trivial MNIST problem. These examples are good as entry points, 

but they don’t show the power of the One-shot NAS approach. In this section, we will 

examine a more complex Model Space for solving the CIFAR-10 problem.

Usually, One-shot NAS deals with cell-designed Supernets. As the name suggests, 

a cell-designed Supernet consists of various cells. Each cell accepts a different number 

of inputs and creates a computational graph using a deep learning block operation 

inside. Each block operation is a LayerChoice of deep learning layers. Let’s build a cell-

designed Supernet called GeneralSupernet to solve the CIFAR-10 problem.

In GeneralSupernet, we define block operation as a LayerChoice from

•	 SepConvBranch(3)

•	 NonSepConvBranch(3)

•	 SepConvBranch(5)

•	 NonSepConvBranch(3)
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•	 AvgPoolBranch

•	 MaxPoolBranch

The implementations of these layers are not provided here, but the reader can get 

details in the following source code files:

•	 TensorFlow: ch5/model/general/tf_ops.py

•	 PyTorch: ch5/model/general/pt_ops.py

Figure 5-17 depicts block operation space.

Figure 5-17.  GeneralSupernet block operation

Each nth cell accepts one required input which is transformed by block operation 

and n additional inputs. Additional inputs are not required and can be zeroed in 

different subnets. The normalized sum of block operation output and additional inputs 

forms cell output. Figure 5-18 demonstrates examples of cell spaces.

Figure 5-18.  GeneralSupernet cell

The sequence of cells forms the GeneralSupernet, and the output of each cell can 

be the input of the subsequent cell. After every three cells, a FactorizedReduced layer is 

inserted. In this section, we will use a GeneralSupernet with six cells. Figure 5-19 depicts 

GeneralSupernet architecture.
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Figure 5-19.  GeneralSupernet
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Let’s calculate how many subnets GeneralSupernet has: (6) × (6×2) × (6×22) × (6×23) 

× (6×24) × (6×25) = 66 × 21+2+3+4+5 ~ 1,500,000,000. Of course, it is not possible to efficiently 

explore this Model Space using a Multi-trial NAS approach. It is also possible to use the 

GeneralSupernet with 9, 12, or 24 cells. In this case, the number of subnets will become 

enormous.

There are a lot of predefined Supernets for One-shot NAS that are aimed at solving 

a specific class of problems. And GeneralSupernet we defined earlier is one of the 

simplest. Let’s implement GeneralSupernet and run One-shot NAS on the CIFAR-10 

dataset.

�Training GeneralSupernet Using TensorFlow 
and ENAS
Let’s implement GeneralSupernet and find the best architecture using ENAS algorithm. 

Listing 5-14 defines GeneralSupernet using TensorFlow.

Importing modules:

Listing 5-14.  GeneralSupernet. TensorFlow. ch5/model/general/tf_general.py

from tensorflow.keras import Model, Sequential

from tensorflow.keras.layers import BatchNormalization, Conv2D, Dense, 

GlobalAveragePooling2D

from nni.nas.tensorflow.mutables import InputChoice, LayerChoice, 

MutableScope

from ch5.model.general.tf_ops import build_conv, build_separable_conv, 

build_avg_pool, build_max_pool, FactorizedReduce

Defining Cell depicted in Figure 5-18:

class Cell(MutableScope):

    def __init__(self, cell_ord, input_num, filters):

        super().__init__(f'cell_{cell_ord}')
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Setting LayerChoice for block operation depicted in Figure 5-17:

        self.block_op = LayerChoice([

            build_conv(filters, 3, 'conv3'),

            build_separable_conv(filters, 3, 'sepconv3'),

            build_conv(filters, 5, 'conv5'),

            build_separable_conv(filters, 5, 'sepconv5'),

            build_avg_pool(filters, 'avgpool'),

            build_max_pool(filters, 'maxpool'),

        ], key = f'op_{cell_ord}')

Setting InputChoice for additional Cell inputs:

        if input_num > 0:

            self.connections = InputChoice(

                n_candidates = input_num,

                n_chosen = None,

                key = f'con_{cell_ord}'

            )

        else:

            self.connections = None

Last cell layer – BatchNormalization:

        self.batch_norm = BatchNormalization(trainable = False)

Defining call method:

    def call(self, inputs):

Main input is processed by block_op:

        out = self.block_op(inputs[-1])

Additional inputs are selected by self.connections and summed:

        if self.connections is not None:

            connection = self.connections(inputs[:-1])

            if connection is not None:

                out += connection

        return self.batch_norm(out)
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Defining GeneralSupernet depicted in Figure 5-19:

class GeneralSupernet(Model):

    def __init__(

            self,

            num_cells = 6,

            filters = 24,

            num_classes = 10

    ):

        super().__init__()

        self.num_cells = num_cells

        self.stem = Sequential([

            �Conv2D(filters, kernel_size = 3, padding = 'same', use_bias 

= False),

            BatchNormalization()

        ])

Setting the positions for pool layers (FactorizedReduce):

        # num_cells = 6 -> pool_layers_idx = [3, 6]

        self.pool_layers_idx = [

            cell_id

            for cell_id in range(1, num_cells + 1) if cell_id % 3 == 0

        ]

Initializing cells and pool_layers lists:

        self.cells = []

        self.pool_layers = []

        for cell_ord in range(num_cells):

            if cell_ord in self.pool_layers_idx:

                pool_layer = FactorizedReduce(filters)

                self.pool_layers.append(pool_layer)

            cell = Cell(cell_ord, cell_ord, filters)

            self.cells.append(cell)
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Defining final layers:

        self.gap = GlobalAveragePooling2D()

        self.dense = Dense(num_classes)

Next, we define call method:

    def call(self, x):

        cur = self.stem(x)

        prev_outputs = [cur]

        for cell_id, cell in enumerate(self.cells):

Passing Cell outputs through FactorizedReduce pooling layer:

            if cell_id in self.pool_layers_idx:

                # Number of Pool Layer

                # 0, 1, 2, ....

                pool_ord = self.pool_layers_idx.index(cell_id)

                pool = self.pool_layers[pool_ord]

                prev_outputs = [pool(tensor) for tensor in prev_outputs]

                cur = prev_outputs[-1]

            cur = cell(prev_outputs)

            prev_outputs.append(cur)

        cur = self.gap(cur)

        logits = self.dense(cur)

        return logits

Since we defined GeneralSupernet, we can launch ENAS using the following script.

Importing modules:

Listing 5-15.  GeneralSupernet ENAS. TensorFlow. ch5/cifar10/enas_tf.py

from tensorflow.keras.losses import Reduction, SparseCategoricalCrossentropy

from tensorflow.keras.optimizers import SGD

import ch5.datasets as datasets

from nni.algorithms.nas.tensorflow import enas

from ch5.model.general.tf_general import GeneralSupernet

from ch5.tf_utils import accuracy, reward_accuracy, get_best_model
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Initializing GeneralSupernet:

model = GeneralSupernet()

Loading datasets:

dataset_train, dataset_valid = datasets.cifar10_dataset()

Declaring loss function:

loss = SparseCategoricalCrossentropy(

    from_logits = True,

    reduction = Reduction.NONE

)

Declaring optimizer:

optimizer = SGD(learning_rate = 0.05, momentum = 0.9)

Setting ENAS trainer parameters:

metrics = accuracy

reward_function = reward_accuracy

batch_size = 256

num_epochs = 100

Initializing EnasTrainer:

trainer = enas.EnasTrainer(

    model,

    loss = loss,

    metrics = metrics,

    reward_function = reward_function,

    optimizer = optimizer,

    batch_size = batch_size,

    num_epochs = num_epochs,

    dataset_train = dataset_train,

    dataset_valid = dataset_valid

)
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Launching training:

trainer.train()

Displaying results:

best = get_best_model(trainer.mutator)

print(best)

Note  Duration ~ 6 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

After the search was completed, the following report was returned:

•	 op_layer_0: 3 SepConvBranch(5)

•	 op_layer_1: 3 SepConvBranch(5)

•	 op_layer_2: 1 SepConvBranch(3)

•	 op_layer_3: 4 NonSepConvBranch(3)

•	 op_layer_4: 1 SepConvBranch(3)

•	 op_layer_5: 1 SepConvBranch(3)

•	 con_layer_1: 0 Additional input from Cell0

•	 con_layer_2: 0 Additional input from Cell0

•	 con_layer_3: None No additional inputs

•	 con_layer_4: [0, 2, 3] Additional inputs from: Cell0, 

Cell2, Cell3

•	 con_layer_5: 3 Additional input from Cell3

Figure 5-20 visualizes the result returned by ENAS.
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Figure 5-20.  ENAS GeneralSupernet best architecture

As see in Figure 5-20, the best architecture does not use pooling operations, 

AvgPoolBranch and MaxPoolBranch, and this makes sense because GeneralSupernet has 

built-in FactorizedReduced layers.
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�Training GeneralSupernet Using PyTorch and DARTS
Let’s implement GeneralSupernet and find the best architecture using DARTS algorithm. 

First, we need to define GeneralSupernet using PyTorch.

Importing modules:

Listing 5-16.  GeneralSupernet. PyTorch. ch5/model/general/pt_general.py

from typing import OrderedDict

import torch.nn as nn

from nni.retiarii.nn.pytorch import LayerChoice, InputChoice

from ch5.model.general.pt_ops import ConvBranch, PoolBranch, FactorizedReduce

Defining Cell depicted in Figure 5-18:

class Cell(nn.Module):

    def __init__(self, cell_ord, input_num, in_f, out_f):

        super().__init__()

Setting LayerChoice for block operation depicted in Figure 5-17:

        self.block_op = LayerChoice(OrderedDict([

            ('SepConvBranch(3)', ConvBranch(in_f, out_f, 3, 1, 1, False)),

            ('NonSepConvBranch(3)', ConvBranch(in_f, out_f, 3, 1, 1, True)),

            ('SepConvBranch(5)', ConvBranch(in_f, out_f, 5, 1, 2, False)),

            ('NonSepConvBranch(3)', ConvBranch(in_f, out_f, 5, 1, 2, True)),

            ('AvgPoolBranch', PoolBranch('avg', in_f, out_f, 3, 1, 1)),

            ('MaxPoolBranch', PoolBranch('max', in_f, out_f, 3, 1, 1))

        ]), label = f'op_{cell_ord}')

Setting InputChoice for additional Cell inputs:

        if input_num > 0:

            self.connections = InputChoice(

                n_candidates = input_num, n_chosen = None,

                label = f'con_{cell_ord}'

            )

        else:

            self.connections = None
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Last cell layer – BatchNormalization:

        self.batch_norm = nn.BatchNorm2d(out_f, affine = False)

Defining forward method:

    def forward(self, inputs):

Main input is processed by block_op:

        out = self.block_op(inputs[-1])

Additional inputs are selected by self.connections and summed:

        if self.connections is not None:

            connection = self.connections(inputs[:-1])

            if connection is not None:

                out = out + connection

        return self.batch_norm(out)

Defining GeneralSupernet depicted in Figure 5-19:

class GeneralSupernet(nn.Module):

    def __init__(

            self,

            num_cells = 6,

            out_f = 24,

            in_channels = 3,

            num_classes = 10

    ):

        super().__init__()

        self.num_cells = num_cells

        # Stem layer

        self.stem = nn.Sequential(

            nn.Conv2d(in_channels, out_f, 3, 1, 1, bias = False),

            nn.BatchNorm2d(out_f)

        )
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Setting the positions for pool layers (FactorizedReduce):

        self.pool_layers_idx = [

            cell_id

            for cell_id in range(1, num_cells + 1) if cell_id % 3 == 0

        ]

Initializing cells and pool_layers lists:

        self.cells = nn.ModuleList()

        self.pool_layers = nn.ModuleList()

        # Initializing Cells and Pool Layers

        for cell_ord in range(num_cells):

            if cell_ord in self.pool_layers_idx:

                pool_layer = FactorizedReduce(out_f, out_f)

                self.pool_layers.append(pool_layer)

            cell = Cell(cell_ord, cell_ord, out_f, out_f)

            self.cells.append(cell)

Defining final layers:

        self.gap = nn.AdaptiveAvgPool2d(1)

        self.dense = nn.Linear(out_f, num_classes)

Next, we define forward method:

    def forward(self, x):

        bs = x.size(0)

        cur = self.stem(x)

        # Constructing Calculation Graph

        cells = [cur]

        for cell_id in range(self.num_cells):

            cur = self.cells[cell_id](cells)

            cells.append(cur)
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Passing Cell outputs through FactorizedReduce pooling layer:

            # If pool layer is added

            if cell_id in self.pool_layers_idx:

                # Number of Pool Layer

                # 0, 1, 2, ...

                pool_ord = self.pool_layers_idx.index(cell_id)

                # Adding Pool Layer to all input cells

                for i, cell in enumerate(cells):

                    cells[i] = self.pool_layers[pool_ord](cell)

                cur = cells[-1]

        cur = self.gap(cur).view(bs, -1)

        logits = self.dense(cur)

        return logits

Since we defined GeneralSupernet, we can launch DARTS using Listing 5-17.

Importing modules:

Listing 5-17.  GeneralSupernet DARTS. PyTorch. ch5/cifar10/darts_pt.py

import torch

import torch.nn as nn

import ch5.datasets as datasets

from nni.retiarii.oneshot.pytorch import DartsTrainer

from ch5.model.general.pt_general import GeneralSupernet

from ch5.pt_utils import accuracy

Initializing GeneralSupernet:

model = GeneralSupernet()

Loading datasets:

dataset_train, dataset_valid = datasets.get_dataset("cifar10")

Declaring loss function:

criterion = nn.CrossEntropyLoss()

Chapter 5  One-Shot Neural Architecture Search



314

Declaring optimizer:

optim = torch.optim.SGD(

    model.parameters(), 0.025,

    momentum = 0.9, weight_decay = 3.0E-4

)

Setting DARTS trainer parameters:

num_epochs = 100

batch_size = 128

accuracy_metrics = accuracy

Initializing DartsTrainer:

trainer = DartsTrainer(

    model = model,

    loss = criterion,

    metrics = accuracy_metrics,

    optimizer = optim,

    num_epochs = num_epochs,

    dataset = dataset_train,

    batch_size = batch_size,

    log_frequency = 10,

    unrolled = False

)

Launching training:

trainer.fit()
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Displaying results:

best_architecture = trainer.export()

print('Best architecture:', best_architecture)

Note  Duration ~ 4 hours on Intel Core i7 with CUDA (GeForce GTX 1050)

After the search was completed, the following report was returned:

•	 op_layer_0: SepConvBranch(3)

•	 op_layer_1: SepConvBranch(5)

•	 op_layer_2: SepConvBranch(5)

•	 op_layer_3: SepConvBranch(5)

•	 op_layer_4: SepConvBranch(5)

•	 op_layer_5: MaxPoolBranch

•	 con_layer_1: 0 Additional input from Cell0

•	 con_layer_2: 0 Additional input from Cell0

•	 con_layer_3: 0 Additional input from Cell0

•	 con_layer_4: 2 Additional input from Cell2

•	 con_layer_5: 4 Additional input from Cell4

Figure 5-21 visualizes the result returned by DARTS.
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Figure 5-21.  DARTS GeneralSupernet best architecture
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The architectures obtained using ENAS (Figure 5-20) and DARTS (Figure-21) are 

similar. They tend to use the SepConvBranch(5) operation and share Cell0 output. 

ENAS best architecture and DARTS best architecture achieve 91.2% and 92.8% accuracy, 

respectively. But we can further improve the accuracy if we increase the number of cells 

(num_cells) in the GeneralSupernet. This will make the search longer, but it will result 

in a more accurate target architecture. The beautiful thing is that we can use the same 

GeneralSupernet and One-shot algorithm for any pattern recognition problem. This 

gives us a universal approach to solving typical deep learning problems. Absolutely One-

shot NAS is one of the most significant achievements of automated deep learning.

�HPO vs. Multi-trial NAS vs. One-Shot NAS
And so, at the moment, we have three different approaches to optimize and construct 

deep learning models: HPO, Multi-trial NAS, and One-shot NAS. And a fair question may 

arise: which method is better to choose? But this question does not have a clear answer. 

Each approach is better suited for a specific task.

•	 HPO deals with black-box optimization and is suitable for selecting 

optimization algorithms, training batch size, and tuning the 

predesigned model. HPO results can be visualized and easily 

analyzed. HPO can be a good starting point to dive into a completely 

new problem or a good finishing point when the final tuning is 

performed.

•	 Multi-trial NAS is only concerned with finding the optimal 

architecture. Despite its durability, Multi-trial NAS is more accurate 

than One-shot NAS. Multi-trial NAS results are much easier to 

interpret because this approach provides metrics for each tried 

architecture.

•	 One-shot NAS is well suited for finding complex architectures for 

very tough tasks. One-shot NAS is good at finding optimal subnets in 

Model Space with millions and billions of elements. It is fast, but it is 

hard to interpret because you get only the best subnet, and you don’t 

know any additional information about another possible solution.
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Table 5-5 shows a comparison of different approaches, where

•	 ✓✓✓: Well suited

•	 ✓✓: Suited

•	 ✓: Poorly suited

Table 5-5.  AutoDL approaches comparison

HPO Multi-trial 
NAS

One-shot 
NAS

Ease of setup ✓✓✓ ✓✓ ✓

Search flexibility ✓✓✓ ✓✓ ✓

Interpretability of results ✓✓✓ ✓✓ ✓

Designing the neural network search space ✓ ✓✓✓ ✓✓

Search for small neural networks for simple tasks ✓ ✓✓✓ ✓

Search for complex architectures for challenging tasks ✓ ✓✓ ✓✓✓

Optimization of the predesigned architecture for a specific 

dataset
✓✓✓ ✓✓ ✓

And here, we again face the problem that there is no unique approach for solving any 

situation, and the No Free Lunch theorem applies here as well. But understanding how 

each algorithm acts will help you make the right choice for solving a particular problem.

�Summary
One-shot NAS is a very promising area of ​​study. It allows you to find neural network 

solutions in a reasonable time. Currently, One-shot algorithms can discover completely 

new architectural keys to solve the most complex problems. This field is developing 

rapidly and will be a handy tool in any researcher’s toolkit. In this chapter, we introduced 

the basic concepts of One-shot NAS and mastered using two of its algorithms: ENAS 

and DARTS. This can be a good starting point for putting One-shot NAS into practice. In 

the next chapter, we will consider the important problem of model compression, which 

allows you to eliminate unnecessary neural network elements without losing its accuracy.

Chapter 5  One-Shot Neural Architecture Search



319
© Ivan Gridin 2022 
I. Gridin, Automated Deep Learning Using Neural Network Intelligence,  
https://doi.org/10.1007/978-1-4842-8149-9_6

CHAPTER 6

Model Pruning
Deep learning models have reached significant success in many real-life problems. A 

lot of devices use neural networks to perform everyday tasks. However, complex neural 

networks are computationally expensive. And not all devices have GPU processors 

to run deep learning models. Therefore, it would be helpful to perform model 

compression methods to reduce the model size and accelerate model performance 

without losing accuracy significantly. One of the main model compression techniques 

is model pruning. Pruning optimizes the model by eliminating some model weights. 

It can eliminate a significant amount of model weights with no negligible damage to 

model performance. A pruned model is lighter and faster. Pruning is a straightforward 

approach that can give nice model speedup results.

NNI provides a toolkit to help users to execute model pruning algorithms. NNI 2.7 

version (which is used in this book) supports pruning for the PyTorch framework only. 

This chapter will study several pruning algorithms and learn how to apply them in 

practice.

�What Is Model Pruning?
Complex neural networks have a lot of layers and many weights. ResNet, DenseNet, and 

VGGNet take up tens of megabytes to store their weights. Developers often use these 

architectures to solve many practical problems. But the chosen architecture is often 

too redundant for the problem being solved, and it contains a lot of extra weights and 

even extra layers. In practice, you can remove excess weights from the model, which will 

significantly speed up calculations in the neural network. Sometimes, deep learning 

models perfectly fit the problem, and they do not have explicit redundancy. Still, they 

are too computationally heavy to be deployed to the special device they need to act in. In 

such cases, developers may sacrifice the model accuracy for acceleration.

https://doi.org/10.1007/978-1-4842-8149-9_6
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Let’s describe how the pruning algorithm acts:

	 1.	 We take a ready-to-use pre-trained deep learning model we want 

to prune.

	 2.	 Pruning algorithm eliminates (prunes) several weights in the 

neural network. By eliminating, we mean that the algorithm 

zeroes these weights. Zeroing the weights significantly speeds 

up calculations since multiplying by 0 is always 0, and there is 

no need to do complex calculations. Usually, candidates for 

elimination are already close to zero, so their zeroing should not 

seriously affect the model’s performance.

	 3.	 Pruned model is retrained (fine-tuned) on the same dataset as the 

original model, but zeroed weights no longer change their values 

and remain zero all the time. During retraining, active weights 

try to take over the functions of the removed neurons to continue 

solving the problem successfully.

Figure 6-1 illustrates the pruning algorithm.
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Figure 6-1.  Pruning algorithm application
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Pruning is a great technique, but sometimes, it degrades the model. It is not always 

possible to remove weights without compromising the model’s accuracy in complex 

neural networks. However, model accuracy degradation can be minimal, and we’ll see 

further that it is possible to compress a model by 80% with almost no accuracy decrease.

Note T erm fine-tuning means retraining technique that trains the unpruned 
weights from their final trained values. In this chapter, we will use the terms 
fine-tuning and retraining interchangeably.

�LeNet Model Pruning
The best way to understand the concept of model pruning is to put it into practice. Let’s 

get back to the well-known LeNet model and the classic MNIST problem. The LeNet 

model design is shown in Listing 6-1.

(Full code is provided in the corresponding file: ch6/model/pt_lenet.py.)

PtLeNetModel provides familiar model design:

Listing 6-1.  LeNet model

class PtLeNetModel(nn.Module):

    def __init__(self, fs = 16, ks = 5):

        super(PtLeNetModel, self).__init__()

        self.conv1 = nn.Conv2d(1, fs, ks)

        self.conv2 = nn.Conv2d(fs, fs * 2, ks)

        self.conv3 = nn.Conv2d(fs * 2, fs * 2, ks)

        self.fc1 = nn.Linear(288, 64)

        self.fc2 = nn.Linear(64, 32)

        self.fc3 = nn.Linear(32, 10)

    def forward(self, x):

        x = F.relu(self.conv1(x))

        x = F.relu(self.conv2(x))

        x = F.max_pool2d(x, 2, 2)
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        x = F.relu(self.conv3(x))

        x = F.max_pool2d(x, 2, 2)

        x = torch.flatten(x, start_dim = 1)

        x = torch.relu(self.fc1(x))

        x = torch.relu(self.fc2(x))

        x = torch.relu(self.fc3(x))

        return F.log_softmax(x, dim = 1)

Next, we add two helper methods that we will need in the future: count_total_

weights and count_total_weights. count_nonzero_weights is a helper method that 

counts the number of zeros in the neural network’s weights, and count_total_weights 

counts the total number of neural network weights.

    def count_nonzero_weights(self):

        counter = 0

        for params in list(self.parameters()):

            counter += torch.count_nonzero(params).item()

        return counter

    def count_total_weights(self):

        counter = 0

        for params in list(self.parameters()):

            counter += torch.numel(params)

        return counter

The trained PtLeNetModel is saved in the following file: ch6/data/lenet.pth. It shows 

0.991 accuracy on the test MNIST dataset. Listing 6-2 demonstrates how original pre-

trained PtLeNetModel can be pruned.

We import necessary modules:

Listing 6-2.  LeNet model pruning. ch6/prune/prune.py

import os

import random

import matplotlib.pyplot as plt

import torch

from nni.algorithms.compression.v2.pytorch.pruning import LevelPruner
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from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

CUR_DIR = os.path.dirname(os.path.abspath(__file__))

Making script reproducible:

# Making script reproducible

random.seed(1)

torch.manual_seed(1)

Loading pre-trained PtLeNetModel:

model = PtLeNetModel()

path = f'{CUR_DIR}/../data/lenet.pth'

model.load_state_dict(torch.load(path))

Loading MNIST dataset:

train_ds, test_ds = mnist_dataset()

Storing accuracy of original model:

original_acc = model.test_model(test_ds)

Storing nonzero weights of original model:

original_nzw = model.count_nonzero_weights()

Next, we are pruning original model with one-shot LevelPruner (pruning algorithm 

internals will be explained in the next section):

# Pruning Config

prune_config = [{

    'sparsity': .8,

    'op_types': ['default'],

}]

# LevelPruner

pruner = LevelPruner(model, prune_config)
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Compressing the original model:

model_pruned, _ = pruner.compress()

Fine-tuning (retraining compressed model):

epochs = 10

acc_list = []

for epoch in range(1, epochs + 1):

    model_pruned.train_model(epochs = 1, train_dataset = train_ds)

    acc = model_pruned.test_model(test_dataset = test_ds)

    acc_list.append(acc)

    print(f'Pruned: Epoch {epoch}. Accuracy: {acc}.')

Since the compressed model is fine-tuned, let’s visualize retraining progress:

pruned_nzw = model_pruned.count_nonzero_weights()

plt.title(

    'Fine-tuning\n'

    f'Original Non-zero weights number: {original_nzw}\n'

    f'Pruned Non-zero weights number: {pruned_nzw}')

plt.axhline(y = original_acc, c = "red",

            label = 'Original model accuracy')

plt.plot(acc_list, label = 'Pruned model accuracy')

plt.xlabel('Retraining Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Visualization result is shown in Figure 6-2.
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Figure 6-2.  LeNet retraining progress

Figure 6-2 illustrates fine-tuning of the compressed model. Original trained LeNet 

model has 59,786 nonzero weights, and compressed LeNetModel has 12,107 nonzero 

weights only. At the beginning of the retraining, the compressed model is less accurate 

than the original model. But after 10 training epochs, the compressed model achieves 

the same accuracy as the original model, having only 12,107 active weights out of 

59,780. Obviously, the original LeNet model was redundant and could be replaced by 

pruned one.

Finally, let’s save the pruned model for future usage:

model_path = f'{CUR_DIR}/../data/lenet_pruned.pth'

mask_path = f'{CUR_DIR}/../data/mask.pth'

pruner.export_model(

    model_path = model_path,

    mask_path = mask_path

)
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NNI provides a special wrapper that allows loading pruned models nni.

compression.pytorch.ModelSpeedup and use them after. In Listing 6-3, we load pruned 

LeNet model and analyze its characteristics.

(Please install the following package to run this script: torchsummary.)

Importing modules:

Listing 6-3.  Pruned LeNet model usage. ch6/prune/analyze_pruned.py

import os

import torch

from nni.compression.pytorch import ModelSpeedup

from torchsummary import summary

from ch6.model.pt_lenet import PtLeNetModel

CUR_DIR = os.path.dirname(os.path.abspath(__file__))

Loading pruned model using ModelSpeedup wrapper:

dummy_input = torch.randn((500, 1, 28, 28))

model_path = f'{CUR_DIR}/../data/lenet_pruned.pth'

mask_path = f'{CUR_DIR}/../data/mask.pth'

model_pruned = PtLeNetModel()

model_pruned.load_state_dict(torch.load(model_path))

speedup = ModelSpeedup(model_pruned, dummy_input, mask_path)

speedup.speedup_model()

model_pruned.eval()

Let’s check the accuracy of the pruned model:

acc = model_pruned.test_model()

print(acc)

The pruned model returns 0.9916 accuracy, the same as the original unpruned 

model. Also, the pruned model actually shrinks its layers deleting unnecessary weights. 

The pruned model is less than the original one, and let’s examine the difference 

between them:

# Loading Original Model

model_original = PtLeNetModel()

model_path = f'{CUR_DIR}/../data/lenet.pth'
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model_original.load_state_dict(torch.load(model_path))

# Displaying summary of Original and Pruned models

print('==== ORIGINAL MODEL =====')

summary(model_original, (1, 28, 28))

print('=========================')

print('====  PRUNED MODEL  =====')

summary(model_pruned, (1, 28, 28))

print('=========================')

Table 6-1 compares original model and pruned one.

Table 6-1.  Original and pruned model comparison

Layer Original
Output Shape

Original
Size

Pruned
Output Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [14,24,24] 364

Conv2d-2 [32,20,20] 12,832 [32,20,20] 11,232

Conv2d-3 [32,6,6] 25,632 [30,6,6] 24,030

Linear-4 [64] 18,496 [61] 16,531

Linear-5 [32] 2,080 [25] 1,550

Linear-6 [10] 330 [10] 260

As shown in Table 6-1, pruned model shrinks Conv2d-1, Conv2d-3, Linear-4, and 

Linear-5 layers. And this is the primary goal of the pruning algorithm, which eliminates 

redundancy from the neural network. The earlier example illustrates how we can prune 

a pre-trained model using NNI. Let’s move forward and study pruning algorithms in 

more detail.
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�One-Shot Pruners
One-shot pruning algorithms prune weights only once based on a specific metric. 

Usually, pruned weights are close to zero, and pruner suggests that their removal will not 

impact the model’s accuracy. One-shot pruners act the following way:

•	 Pruner accepts a model and selects active weights and the weights to 

be pruned. As a result, the pruner returns a model and a binary mask, 

where 1 means active weight and 0 means weight to be pruned.

•	 Original model is speeded up by pruning redundant weights resulting 

a compressed model.

•	 Fine-tuning algorithm retrains the compressed model to adjust its 

weights.

This pruner flow algorithm is depicted in Figure 6-3.

Figure 6-3.  One-shot pruning

We can define the main steps to implement one-shot pruning algorithms using NNI 

the following way:

	 1.	 Load a pre-trained model

	 2.	 Initialize pruner

	 3.	 Compress original model

	 4.	 Retrain compressed model
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	 5.	 Save compressed model

	 6.	 Load and speed up compressed model

Step 1. Model loading is a native PyTorch operation:

model = SomeModel()

model.load_state_dict(torch.load(model_path))

Step 2. To initialize the pruner, we must specify the pruner configuration (we will study 

the pruner configuration in the next section). Here is an example of pruner initialization:

prune_config = [{

    'sparsity': .8,

    'op_types': ['default'],

}]

pruner = LevelPruner(model, prune_config)

Step 3. Pruner compresses original model applying its logic to reduce model weights:

model_pruned, mask = pruner.compress()

Step 4. Compressed model is being retrained according to the same training 

algorithm as the original one:

for epoch in range(1, epochs + 1):

    pruner.update_epoch(epoch)

    train(model, dataset, optimizer, criterion)

Step 5. Compressed model is stored using pruner.export_model method:

pruner.export_model(model_path = model_path, mask_path = mask_path)

Step 6. Saved model is loaded and wrapped by nni.compression.pytorch.

ModelSpeedup class:

# dummy input tensor

dummy_input = torch.randn((500, 1, 28, 28))

model_pruned = SomeModel()

model_pruned.load_state_dict(torch.load(model_path))

speedup = ModelSpeedup(model_pruned, dummy_input, mask_path)

speedup.speedup_model()
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And that’s it. The compressed model is ready to use! Let’s create a helper script 

that will apply steps 2–6 we defined earlier. Listing 6-4 applies a pruning algorithm and 

returns a compressed model.

Importing modules:

Listing 6-4.  Pruning implementation. ch6/algos/utils.py

import copy

import os

import torch

from nni.compression.pytorch import ModelSpeedup

from torchsummary import summary

CUR_DIR = os.path.dirname(os.path.abspath(__file__))

oneshot_prune method accepts the following parameters:

•	 model_original: Pre-trained original model

•	 pruner_cls: Pruner class

•	 pruner_config: Pruner configuration

•	 train_ds: Train dataset

•	 epochs: Number of training epochs

•	 model_input_shape: Shape of model input

def oneshot_prune(

        model_original,

        pruner_cls,

        pruner_config,

        train_ds,

        epochs = 10,

        model_input_shape = (1, 1, 28, 28)

):

    pruner_name = pruner_cls.__name__

    model = copy.deepcopy(model_original)
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Step 2. Initializing pruner:

    pruner = pruner_cls(model, pruner_config)

Step 3. Compressing original model:

    model_pruned, mask = pruner.compress()

Step 4. Retraining compressed model:

    for epoch in range(1, epochs + 1):

        model_pruned.train_model(

            epochs = 1,

            train_dataset = train_ds

        )

Step 5. Saving compressed model:

    model_path = f'{CUR_DIR}/../data/{pruner_name}_pruned.pth'

    mask_path = f'{CUR_DIR}/../data/{pruner_name}_mask.pth'

    pruner.export_model(

        model_path = model_path,

        mask_path = mask_path

    )

Step 6. Loading and speeding up compressed model:

    dummy_input = torch.randn(model_input_shape)

    model_pruned = model_original.__class__()

    model_pruned.load_state_dict(torch.load(model_path))

    speedup = ModelSpeedup(model_pruned, dummy_input, mask_path)

    speedup.speedup_model()

    model_pruned.eval()

    return model_pruned

Fine. Since we know how to apply one-shot pruning algorithms, let’s go further and 

study some of them.
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�Pruner Configuration
Each pruner accepts configuration, which specifies its internal logic. Pruner 

configuration is a List of Dict entries, and each entry specifies a pruning strategy 

applied to a specified layer set. Table 6-2 describes pruner configuration parameters.

Table 6-2.  Pruner configuration

Key Description

sparsity Specifies the sparsity for each layer in this configuration entry to be compressed. If 

sparsity = 0.8, then 80% of layer weights will be pruned, and 20% will be left 

active

op_types Specifies what types of operations to compress. 'default' means following the 

algorithm’s default setting. All supported module types for PyTorch are defined package file  

nni/compression/pytorch/default_layers.py:

'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 

'ConvTranspose2d', 'ConvTranspose3d', 'Linear', 'Bilinear',   

'PReLU', 'Embedding', 'EmbeddingBag'

op_names Specifies names of operations to be compressed. If this field is omitted, operations will 

not be filtered by it

op_

partial_

names

Operation partial names to be compressed. If op_partial_names = 'fc_', then all 

layers with the following mask 'fc_*' will be pruned

exclude Default is False. If this field is True, it means the operations with specified types and 

names will be excluded from the compression

Here is an example of the pruning configuration of a one-shot pruner applied to the 

LeNet model:

prune_config = [

    {

        'sparsity': .8,

        'op_types': ['Conv2d'],

    },
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    {

        'sparsity': .6,

        'op_types': ['Linear'],

    },

    {

        'op_names': ['fc3'],

        'exclude':  True

    }

]

If you don’t want to specify a special pruning strategy for each layer type, then you 

can use the following configuration:

prune_config = [

    {

        'sparsity': .8,

        'op_types': ['default']

    }

]

�Level Pruner
Level pruner is a straightforward one-shot pruner. Sparsity level means prune ratio, that 

is, sparsity=0.7 means that 70% of model weight parameters will be pruned. Level 

pruner sorts the weights in the specified layer by their absolute values. And then mask to 

zero the smallest magnitude weights until the desired sparsity level is reached.

Level pruner is applied the following way:

from nni.algorithms.compression.v2.pytorch.pruning import LevelPruner

prune_config = [{

    'sparsity': .8,

    'op_types': ['default'],

}]

pruner = LevelPruner(model, prune_config)

model_pruned, mask = pruner.compress()
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Let’s apply LevelPruner to prune the LeNet model using Listing 6-5.

Importing modules:

Listing 6-5.  LevelPruner. ch6/algos/one_shot/level_pruner.py

from nni.algorithms.compression.v2.pytorch.pruning import LevelPruner

from ch6.algos.utils import model_comparison, oneshot_prune, visualize_mask

from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

Loading pre-trained model and MNIST dataset:

original = PtLeNetModel.load_model()

train_ds, test_ds = mnist_dataset()

We will prune Conv2d layers with 0.8 sparsity and Linear layers with 0.6 sparsity. 

Also, we will exclude the final classifier linear layer fc3 from pruning.

prune_config = [

    {

        'sparsity': .8,

        'op_types': ['Conv2d'],

    },

    {

        'sparsity': .6,

        'op_types': ['Linear'],

    },

    {

        'op_names': ['fc3'],

        'exclude':  True

    }

]

Defining pruner:

pruner_cls = LevelPruner
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Compressing original model using LevelPruner:

compressed, mask = oneshot_prune(

    original,

    pruner_cls,

    prune_config,

    train_ds,

    epochs = 10

)

Visualizing prune mask:

visualize_mask(mask)

Figure 6-4 shows the mask of a pruned model. We see that the mask leaves 40% 

active weights for linear layers and 20% active weights for convolutional layers.

Figure 6-4.  LevelPruner active weights

Comparing original model and compressed one:

model_comparison(original, compressed, test_ds, (1, 28, 28))

The original model has 0.991 accuracy, and the compressed one has the same 0.991 

accuracy. Table 6-3 compares the architectures of original and compressed models.
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Table 6-3.  Original and level pruned model comparison

Layer Original Output
Shape

Original
Size

Pruned Output
Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [14,24,24] 364

Conv2d-2 [32,20,20] 12,832 [32,20,20] 11,232

Conv2d-3 [32,6,6] 25,632 [30,6,6] 24,030

Linear-4 [64] 18,496 [64] 17,344

Linear-5 [32] 2,080 [32] 2,080

Linear-6 [10] 330 [10] 330

Total 59,786 55,380

Level pruner compressed the original LeNet model without decreasing its accuracy.

�FPGM Pruner
FPGM (Filter Pruning via Geometric Median) Pruner is a one-shot pruner that prunes 

filters with the smallest geometric median. For more details, please refer to the original 

paper “Filter Pruning via Geometric Median for Deep Convolutional Neural Networks 

Acceleration” (https://arxiv.org/pdf/1811.00250.pdf).

FPGM Pruner supports Conv2d, Linear as layers for pruning operation. FPGM 

Pruner is applied the following way:

from nni.algorithms.compression.v2.pytorch.pruning import FPGMPruner

prune_config = [{

    'sparsity': .8,

    'op_types': ['Conv2d'],

}]

pruner = FPGMPruner(model, prune_config)

model_pruned, mask = pruner.compress()

Chapter 6  Model Pruning

https://arxiv.org/pdf/1811.00250.pdf


338

Here is an example of FPGMPruner application.

Importing modules:

Listing 6-6.  FPGMPruner. ch6/algos/one_shot/fpgm_pruner.py

from nni.algorithms.compression.v2.pytorch.pruning import FPGMPruner

from ch6.algos.utils import oneshot_prune, model_comparison, visualize_mask

from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

Loading pre-trained model and MNIST dataset:

original = PtLeNetModel.load_model()

train_ds, test_ds = mnist_dataset()

Pruning convolutional layers of original model using FPGMPruner with 0.5 sparsity:

compressed, mask = oneshot_prune(

    original,

    FPGMPruner,

    [{

        'sparsity': .5,

        'op_types': ['Conv2d'],

    }],

    train_ds

)

Visualizing prune mask:

visualize_mask(mask)

Figure 6-5 shows the mask of the compressed model. We see that the mask leaves 

50% active weights for Conv2d layers.
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Figure 6-5.  FPGMPruner active weights

Comparing original model and compressed one:

model_comparison(original, compressed, test_ds, (1, 28, 28))

Original model has 0.991 accuracy, while the compressed one has close accuracy 

0.9894. Table 6-4 compares the architectures of original and compressed models.

Table 6-4.  Original and FPGM pruned model comparison

Layer Original
Output Shape

Original
Size

Pruned
Output Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [8,24,24] 208

Conv2d-2 [32,20,20] 12,832 [16,20,20] 3,216

Conv2d-3 [32,6,6] 25,632 [16,6,6] 6,416

Linear-4 [64] 18,496 [64] 9,280

Linear-5 [32] 2,080 [32] 2,080

Linear-6 [10] 330 [10] 330

Total 59,786 21,530

Table 6-4 shows that FPGMPruner compressed the original model very heavily with 

almost no loss of accuracy.
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�L1Norm and L2Norm Pruners
L1Norm Pruner and L2Norm Pruner are one-shot pruners that prune layers according 

to L1-norm and L2-norm, respectively. For more details, please refer to the original paper 

“Pruning Filters for Efficient ConvNets” (https://arxiv.org/pdf/1608.08710.pdf).

L1Norm and L2Norm pruners support Conv2d, Linear as a layer for pruning 

operation. L1NormPruner and L2NormPruner are applied the following way:

from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner, 

L2NormPruner

prune_config = [{

    'sparsity': .8,

    'op_types': ['Conv2d'],

}]

pruner = L1NormPruner(model, prune_config)

# pruner = L2NormPruner(model, prune_config)

model_pruned, mask = pruner.compress()

Here is an example of L2NormPruner application.

Importing modules:

Listing 6-7.  L2NormPruner. ch6/algos/one_shot/l2norm_pruner.py

from nni.algorithms.compression.v2.pytorch.pruning import L2NormPruner

from ch6.algos.utils import oneshot_prune, model_comparison, visualize_mask

from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

Loading pre-trained model and MNIST dataset:

original = PtLeNetModel.load_model()

train_ds, test_ds = mnist_dataset()

Pruning convolutional layers of original model using L2NormPruner with 0.7 

sparsity:
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compressed, masks = oneshot_prune(

    original,

    L2NormPruner,

    [{

        'sparsity': .7,

        'op_types': ['Conv2d'],

    }],

    train_ds

)

Visualizing prune mask:

visualize_mask(masks)

Figure 6-6 visualizes the mask of the compressed model. We see that the mask leaves 

30% active weights for Conv2d layers.

Figure 6-6.  L2NormPruner active weights

And let’s compare the architectures of the original and compressed model:

model_comparison(original, compressed, test_ds, (1, 28, 28))

Original model has 0.991 accuracy, while the compressed one degrades to 0.98 

accuracy. Table 6-5 compares the architectures of original and compressed models.
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Table 6-5.  Original and L2Norm pruned model comparison

Layer Original
Output Shape

Original
Size

Pruned
Output Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [5,24,24] 130

Conv2d-2 [32,20,20] 12,832 [10,20,20] 1,260

Conv2d-3 [32,6,6] 25,632 [10,6,6] 2,510

Linear-4 [64] 18,496 [64] 5,824

Linear-5 [32] 2,080 [32] 2,080

Linear-6 [10] 330 [10] 330

Total 59,786 12,134

Table 6-5 shows that L2Norm Pruner compressed the original model almost five 

times, degrading from 0.991 to 0.98 accuracy.

�Iterative Pruners
One-shot pruners are easy to use but have one major drawback. We must guess the 

optimal sparsity values ​​in advance. We usually want to maximize model compression 

without decreasing accuracy significantly. The natural solution would be to iterate 

several sparsity values ​​to find the optimal one. This is exactly what iterative pruners 

were designed for. Pruning algorithms iteratively prune weights during optimization, 

which control the pruning schedule, including some automatic pruning algorithms. 

After the iterative pruning algorithm completes all iterations, it selects the best pruned 

model according to specified score (it is not a necessary accuracy score). Figure 6-7 

demonstrates iterative pruning in action.
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Figure 6-7.  Iterative pruning

This section will examine two popular iterative tuners: linear pruner and 

AGP pruner.

�Linear Pruner
Linear pruner is an iterative pruner. It will increase sparsity evenly from zero during each 

iteration. For example, the final sparsity is set as 0.5, and the iteration number is 5, and 

then the sparsity used in each iteration is [0.1, 0.2, 0.3, 0.4, 0.5].
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LinearPruner is applied as follows:

from nni.algorithms.compression.v2.pytorch.pruning import LinearPruner

config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]

pruner = LinearPruner(

    model = original,

    config_list = config_list,

    pruning_algorithm = 'l1',

    total_iteration = 4,

    finetuner = finetuner,

    evaluator = finetuner,

    speedup = True,

    dummy_input = dummy_input_tensor

)

pruner.compress()

_, compressed, masks, best_acc, best_sparsity = pruner.get_best_result()

We will detail the Iterative Tuner configuration parameters in the “Iterative Pruner 

Configuration” section.

�AGP Pruner
AGP is an iterative pruner, in which the sparsity is increased from an initial sparsity value 

si = 0 to a final sparsity value sf over a span of n pruning iterations, starting at training step 

t0 and with pruning frequency Δt:

 

For more details, please refer to the original paper “Exploring the efficacy of pruning 

for model compression” (https://arxiv.org/pdf/1710.01878.pdf).
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AGPPruner is applied as follows:

from nni.algorithms.compression.v2.pytorch.pruning import AGPPruner

config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]

pruner = AGPPruner(

    model = original,

    config_list = config_list,

    pruning_algorithm = 'l1',

    total_iteration = 4,

    finetuner = finetuner,

    evaluator = finetuner,

    speedup = True,

    dummy_input = dummy_input_tensor

)

pruner.compress()

_, compressed, masks, best_acc, best_sparsity = pruner.get_best_result()

We will detail the Iterative Tuner configuration parameters in the “Iterative Pruner 

Configuration” section.

�Iterative Pruner Configuration
Linear pruner and AGP pruner configuration is presented in Table 6-6.
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Table 6-6.  Iterative pruner configuration

Key Description

model Original PyTorch model

config_list Pruning configuration

pruning_

algorithm

(str) Specifies pruning algorithm.

Supported choices:  level, l1, l2, fpgm, slim, apoz,  

mean_activation, taylorfo, admm

total_

iteration

(int) Total number of iterations

log_dir (str) Specifies log directory to save results. You can find the best model pth 

files in this folder

keep_

intermediate_

result

(bool) If keeping the intermediate result, including intermediate model and 

masks during each iteration

finetuner (Optional[Callable[[Module], None]])  Fine-tuner function that 

retrains model after each pruning iteration

speedup (bool) If set True, speed up the model at the end of each iteration to make 

the pruned model compact

dummy_input (Optional[torch.Tensor]) If speedup is True, dummy_input is required 

for tracing the model in speed up

evaluator (Optional[Callable[[Module], float]])  Evaluate the pruned model 

and give a score. If evaluator is None, the best result refers to the latest result

pruning_params (Dict) Extra parameters for pruning_algorithm implementation

�Iterative Pruning Scenarios
This section will study two common use cases for iterative pruning.
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�Best Accuracy Under Size Threshold Scenario
A common problem is when we need to compress a model not to exceed a specified size 

threshold. In this case, it is necessary to choose the best model, which will be less than 

the specified size threshold. Figure 6-8 illustrates how this can be done using iterative 

pruning.

Figure 6-8.  Best accuracy under size threshold scenario

Let’s handle this scenario to find the best compressed LeNet model that fits 30,000 

model size (original size is 59,786) using iterative LinearPruner.
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Importing modules:

Listing 6-8.  Best accuracy under size threshold scenario. ch6/algos/iter/ 

linear_pruner_best_acc_scr.py

import os

import torch

from nni.algorithms.compression.v2.pytorch.pruning import LinearPruner

from ch6.algos.utils import model_comparison

from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

CUR_DIR = os.path.dirname(os.path.abspath(__file__))

Loading original model:

original = PtLeNetModel.load_model()

Specifying maximal sparsity for Conv2d and Linear layers:

config_list = [

    {'sparsity': 0.85, 'op_types': ['Conv2d']},

    {'sparsity': 0.4, 'op_types': ['Linear']},

    {'op_names': ['fc3'], 'exclude': True}  # excluding final layer

]

Now we need to define a method that calculates the model’s score. All models whose 

size exceeds 30,000 will have a 0 score because we do not accept models larger than the 

specified size.

def evaluator(m: PtLeNetModel):

    if m.count_total_weights() > 30_000:

        return 0

    return m.test_model()

Defining LinearPruner with 10 iterations and L1Norm pruning algorithm:

pruner = LinearPruner(

    model = original,

    config_list = config_list,
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    pruning_algorithm = 'l1',

    total_iteration = 10,

    finetuner = lambda m: m.train_model(epochs = 1),

    evaluator = evaluator,

    speedup = True,

    dummy_input = torch.rand(10, 1, 28, 28),

    log_dir = CUR_DIR  # logging results (model.pth and mask.pth is there)

)

Running iterative compression cycle:

pruner.compress()

Receiving results:

_, compressed, masks, best_score, best_sparsity =\

    pruner.get_best_result()

The best pruned model is saved in ch6/algos/iter:

# Best model saved in CUR_DIR/<date/best_result

print(f'Best Model is saved in: {CUR_DIR}')

Now let’s analyze results returned by LinearPruner. First, let’s display a sparsity of 

each layer of the best pruned model:

print('===========')

print(f'Best accuracy: {best_score}')

print('Best Sparsity:')

for layer in best_sparsity:

    print(f'{layer}')

Table 6-7 shows the sparsity of the best pruned model.
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Table 6-7.  Sparsity of the best pruned model for  

best accuracy under size threshold scenario

Layer Sparsity

conv1 (Conv2d) 0.19

conv2 (Conv2d) 0.003

conv3 (Conv2d) 0.16

fc1 (Linear) 0

fc2 (Linear) 0.085

And finally, let’s compare the original and the best pruned model:

# Displaying comparison

train_ds, test_ds = mnist_dataset()

model_comparison(original, compressed, test_ds, (1, 28, 28))

Original model has 0.991 accuracy, while the best compressed one that fits 

30,000 size has 0.9913 accuracy. Table 6-8 compares the architectures of original and 

compressed models.

Table 6-8.  Original and iteratively pruned by LinearPruner model comparison

Layer Original
Output Shape

Original
Size

Pruned
Output Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [7,24,24] 182

Conv2d-2 [32,20,20] 12,832 [26,20,20] 4,576

Conv2d-3 [32,6,6] 25,632 [16,6,6] 10,416

Linear-4 [64] 18,496 [62] 8,990

Linear-5 [32] 2,080 [24] 1,512

Linear-6 [10] 330 [10] 250

Total 59,786 25,926
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Great! We have significantly compressed the original LeNet model more than twice 

without losing accuracy.

�Minimal Size Above Accuracy Threshold Scenario
Another case is to compress the model as much as possible while staying above the 

specified accuracy threshold. Figure 6-9 illustrates how this can be done using iterative 

pruning.

Figure 6-9.  Minimal size above specified accuracy threshold scenario

Listing 6-9 handles this scenario to find the minimal compressed LeNet model that 

gives > 0.98 accuracy (original accuracy is 0.991) using iterative AGPPruner.
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Importing modules:

Listing 6-9.  Minimal size above specified accuracy threshold scenario. ch6/

algos/iter/agp_pruner_min_size_scr.py

import os

from math import inf

import torch

from nni.algorithms.compression.v2.pytorch.pruning import AGPPruner

from ch6.algos.utils import model_comparison

from ch6.datasets import mnist_dataset

from ch6.model.pt_lenet import PtLeNetModel

CUR_DIR = os.path.dirname(os.path.abspath(__file__))

Loading original model:

original = PtLeNetModel.load_model()

Specifying maximal sparsity for Conv2d and Linear layers:

config_list = [

    {'sparsity': 0.85, 'op_types': ['Conv2d']},

    {'sparsity': 0.4, 'op_types': ['Linear']},

    {'op_names': ['fc3'], 'exclude': True}  # excluding final layer

]

Now we need to define a method that calculates the model’s score. All models 

whose accuracy is lower than 0.98 will have a -inf score because we do not accept such 

poor models. If the model performs better than 0.98, then its score is (-count_total_

weights):

def evaluator(m: PtLeNetModel):

    acc = m.test_model()

    if acc < 0.98:

        return -inf

    return - m.count_total_weights()
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Defining AGPPruner with 20 iterations and L2Norm pruning algorithm:

pruner = AGPPruner(

    model = original,

    config_list = config_list,

    pruning_algorithm = 'l2',

    total_iteration = 20,

    finetuner = lambda m: m.train_model(epochs = 1),

    evaluator = evaluator,

    speedup = True,

    dummy_input = torch.rand(10, 1, 28, 28),

    log_dir = CUR_DIR  # logging results (model.pth and mask.pth is there)

)

Running iterative compression cycle:

pruner.compress()

Receiving results:

_, compressed, masks, best_score, best_sparsity =\

    pruner.get_best_result()

The best pruned model is saved in ch6/algos/iter:

# Best model saved in CUR_DIR/<date/best_result

print(f'Best Model is saved in: {CUR_DIR}')

Now let’s analyze results returned by AGPPruner. First, let’s display a sparsity of each 

layer of the best pruned model:

print('===========')

print(f'Best accuracy: {best_score}')

print('Best Sparsity:')

for layer in best_sparsity:

    print(f'{layer}')

Table 6-9 shows the sparsity of the best pruned model.

Chapter 6  Model Pruning



354

Table 6-9.  Sparsity of the best pruned model for  

minimal size above accuracy threshold scenario

Layer Sparsity

conv1 (Conv2d) 0.13

conv2 (Conv2d) 0

conv3 (Conv2d) 0.13

fc1 (Linear) 0

fc2 (Linear) 0.03

And finally, let’s compare the original and the best pruned model:

# Displaying comparison

train_ds, test_ds = mnist_dataset()

model_comparison(original, compressed, test_ds, (1, 28, 28))

Original model has 0.991 accuracy and 59,786 size, while the minimal model that 

exceeds 0.98 accuracy has 0.9883 accuracy and 11,535 size. Table 6-10 compares the 

architectures of original and compressed models.

Table 6-10.  Original and iteratively pruned by AGPPruner model comparison

Layer Original
Output Shape

Original
Size

Pruned
Output Shape

Pruned
Size

Conv2d-1 [16,24,24] 416 [3,24,24] 78

Conv2d-2 [32,20,20] 12,832 [24,20,20] 1,824

Conv2d-3 [32,6,6] 25,632 [7,6,6] 4,207

Linear-4 [64] 18,496 [61] 3,904

Linear-5 [32] 2,080 [21] 1,302

Linear-6 [10] 330 [10] 220

Total 59,786 11,535
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Yes, the accuracy of the original model degraded from 0.991 to 0.9883, but we 

compressed the original model more than five times! We made our model lightweight, 

and now it is more attractive for economical usage.

In this section, we have demonstrated the practical use of iterative pruners in real-

world cases. We see that iterative pruning significantly benefits practical deep learning 

deployment problems.

NNI provides a rich set of pruning algorithms:

•	 Slim Pruner

•	 Activation APoZ Rank Pruner

•	 Activation Mean Rank Pruner

•	 Taylor FO Weight Pruner

•	 ADMM Pruner

•	 Movement Pruner

•	 Lottery Ticket Pruner

•	 Simulated Annealing Pruner

•	 Auto Compress Pruner

•	 AMC Pruner

Please refer to the official documentation for more details: https://nni.

readthedocs.io.

�Summary
Pruning is an essential part of automated deep learning. It denotes the neural network 

complexity problem. In addition to the fact that we need an accurate neural network, 

we also need a lightweight neural network. We will always prefer a neural network 

with 1M parameters over a neural network with 10M parameters if they have the same 

accuracy. In this chapter, we have covered the basic principles of model pruning using 

NNI. Model pruning is a significant direction of ​​neural network optimization that allows 

the integration of machine learning models into simple devices.
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CHAPTER 7

NNI Recipes
In the previous chapters, we studied various NNI features and applications. NNI is a 

very efficient automated deep learning tool that solves complex deep learning problems. 

We have witnessed that many NNI experiments can last days or even weeks. Therefore, 

it is crucial to organize experiments properly. Otherwise, a lot of valuable information 

and efforts can be lost. On the other hand, NNI uses sophisticated mathematical search 

algorithms to find the optimal solution in the shortest time in the vast search space. 

Time is a precious resource. So it is also essential to speed up the NNI execution, which 

will help maximize the efficiency. It is great to understand the mathematical core of 

algorithms NNI implements, but it is also important to know how to use NNI effectively.

This chapter will examine patterns and recipes that can help make NNI interactions 

much more effective. These recipes should help speed up, stabilize, and make research 

and experiments more developer friendly.

�Speed Up Trials
It is essential to speed up the Trial execution in HPO and Multi-trial NAS. The 

completion of the search algorithm depends on the duration of the Trials, so Trial speed 

optimization is the first thing a developer should start with. Here, we will mention basic 

rules a reader should follow to construct a fast Trial.

Use the GPU. One of the most common ways to speed up neural network 

computations is to use a GPU. Properly configuring the model for GPU usage is the 

developer’s responsibility. If your machine has GPUs, ensure they are utilized during 

NNI Trial execution.

Do not download dataset twice. A common mistake is downloading heavy datasets 

without caching them on the disk. Please make sure that the downloaded dataset is 

cached on disk and the trial does not attempt to download ten gigabytes from the 

Internet each time it runs a new trial.
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Use the duration panel to determine the longest-running Trials. This can help in 

finding abnormally long Trials. Figure 7-1 shows NNI duration panel.

Figure 7-1.  Duration panel

Use dry trial runs to debug trials. Each trial can be run manually as a Python script, 

which can help find performance issues and bottlenecks. Try running the Trial several 

times to check its performance before launching the experiment.

�Start–Stop–Resume
Keep in mind that each experiment can be manually stopped and resumed after. All 

experiment information is stored in the NNI output folder (path is defined by NNI_

OUTPUT_DIR environment variable, ~/nni-experiments by default). Therefore, you can 

stop the experiment at any time using the following command:

nnictl stop <experiment_id>

and resume it with

nnictl resume <experiment_id>

You can resume an embedded experiment using the following script:

from time import sleep

from nni.experiment import Experiment

experiment = Experiment('local')
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experiment.resume('experiment_id', port)

while True:

    sleep(1)

    if experiment.get_status() == 'DONE':

        break

This could be useful when you need to restart an execution machine or an 

experiment crashed for some reason. It is also possible to resume a finished experiment 

to re-analyze its results.

�Continue Finished Experiment
Suppose the experiment stopped meeting terminal condition (maxTrialNumber or 

maxExperimentDuration), but you are not satisfied with the results and want to continue 

the experiment. In that case, you can resume the finished experiment by changing the 

terminal condition in WebUI. For example, Figure 7-2 illustrates maxTrialNumber update.

Figure 7-2.  Updating maxTrialNumber

You can also use the WebUI to update the Experiment configuration and 

search space.

�NNI and TensorBoard
NNI can be integrated with TensorBoard. This is very practical if you want to visualize 

additional Trial metrics. Let’s look at an example of integrating NNI with TensorBoard. 

Make sure tensorboard is installed in your environment. Listing 7-1 illustrates a dummy 

Trial implementation that writes metrics using TensorBoard format.
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Listing 7-1.  NNI and TensorBoard. ch7/tb/trial.py

import os

from random import random

import nni

The simplest way is to use torch.utils.tensorboard.SummaryWriter class to export 

metrics to tensorboard logs:

from torch.utils.tensorboard import SummaryWriter

Initializing SummaryWriter:

log_dir = os.path.join(os.environ["NNI_OUTPUT_DIR"], 'tensorboard')

writer = SummaryWriter(log_dir)

Trial entry point:

if __name__ == '__main__':

    p = nni.get_next_parameter()

    for i in range(100):

Calculating dummy metrics:

        acc = min((i + random() * 10) / 100, 1)

        loss = max((100 - i + random() * 10) / 100, 0)

Writing metrics to tensorboard log:

        writer.add_scalar('Accuracy', acc, i)

        writer.add_scalar('Loss', loss, i)

        nni.report_intermediate_result(acc)

    nni.report_final_result(acc)

You can run dummy experiment that uses Trial from Listing 7-1 using the following 

command:

nnictl create --config=ch7/tb/config.yml
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Once the experiment has started, you can go to the Trial jobs panel on Trails detail 

page, select Trials you want to analyze, and click TensorBoard button, as shown in 

Figure 7-3.

Figure 7-3.  Launching TensorBoard

After clicking the TensorBoard button, NNI starts the TensorBoard process passing 

Trial log directories as its input and redirects the browser to its web page. Figure 7-4 

shows TensorBoard panel with metrics we have collected during dummy trials we 

defined in Listing 7-1.
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Figure 7-4.  TensorBoard displaying Trial metrics

NNI runs an actual TensorBoard process, so you can stop it when you’re done with it, 

as shown in Figure 7-5.
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Figure 7-5.  Stopping TensorBoard process

Integrating TensorBoard in your NNI Experiments can help you analyze Trial results 

and whole Experiment progress.

�Move Experiment to Another Server
All information about the Experiment is stored in the NNI_OUTPUT_DIR/<experiment_id> 

folder (~/nni-experiments/<experiment_id> by default), so you can easily move 

the experiment data to another server to resume it there. You just need to stop the 

Experiment, move the folder to another server, and resume the Experiment. Figure 7-6 

illustrates this approach.

Figure 7-6.  Moving Experiment to another server

You can use this trick if you want to move your experiment to a more powerful server 

or if you want to share the results of an experiment.
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�Scaling Experiments
Scaling is the most natural approach to speed up Experiment execution. You can use 

multiple servers to distribute Trial jobs. NNI implements the Training Service concept. 

Training Service is an environment that performs Trial jobs. We have only used the Local 

Training Service in this book, which means that all calculations are done on the local 

machine. But you can organize an Experiment using various Remote Training Services. 

NNI 2.7 supports the following environments as Training Services:

•	 Local: Running Trial jobs on local machine

•	 Remote: Running Trial jobs on remote machine using ssh

•	 OpenPAI: Running Trial jobs on Microsoft Open Platform for 

AI server

•	 AML: Running Trial jobs on Azure Machine Learning server

•	 Hybrid: Allows setting several different Training Services

Many search algorithms allow concurrent Trial execution, so you can horizontally 

scale the experiment, significantly increasing its speed. Figure 7-7 illustrates this 

concept.

Figure 7-7.  Horizontal scaling

Let’s look at an example configuration that uses the Remote Training Service.

Common configuration part:

trialConcurrency: 4

maxTrialNumber: 100

searchSpace:
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    x:

      _type: quniform

      _value: [1, 100, 0.1]

trialCodeDirectory: .

trialCommand: python3 trial.py

tuner:

  name: Random

Remote Training Service settings. nniManagerIp is used as the host Experiment 

address to send metrics from Trial jobs running on remote machines:

nniManagerIp: <nni_host_ip> # example: 10.10.120.20

trainingService:

  platform: remote

Listing remote machines with ssh access:

  machineList:

    - host: <remote1_ip> # example: 10.10.120.21

      user: <remote1_ssh_user> # example: nni_user

      password: <remote1_ssh_pass> # example: nni_user_pass

      pythonPath: <remote1_ssh_pass> # example: /opt/python3/bin

    - host: <remote2_ip> # example: 10.10.120.22

      user: <remote2_ssh_user> # example: nni_user

      password: <remote2_ssh_pass> # example: nni_user_pass

      pythonPath: <remote2_ssh_pass> # example: /opt/python3/bin

You can apply Remote Training Service in embedded (stand-alone) NNI mode as 

follows:

# Loading Packages

from nni.experiment import Experiment, RemoteConfig, RemoteMachineConfig

from pathlib import Path

Remote Training Service parameters:
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nni_host_ip = '10.10.120.20'

remote_ip = '10.10.120.21'

remote_ssh_user = 'nni_user'

remote_ssh_pass = 'nni_pass'

remote_python_path = '/opt/python3/bin'

Common Experiment configuration:

# Defining Search Space

search_space = {

    "x": {"_type": "quniform", "_value": [1, 100, .1]}

}

# Experiment Configuration

experiment = Experiment('remote')

experiment.config.experiment_name = 'Remote Experiment'

experiment.config.trial_concurrency = 4

experiment.config.trial_command = 'python3 trial.py'

experiment.config.trial_code_directory = Path(__file__).parent

experiment.config.max_trial_number = 1000

experiment.config.search_space = search_space

experiment.config.tuner.name = 'Random'

Remote Training Service configuration:

experiment.config.nni_manager_ip = nni_host_ip

remote_service = RemoteConfig()

remote_machine = RemoteMachineConfig()

remote_machine.host = remote_ip

remote_machine.user = remote_ssh_user

remote_machine.password = remote_ssh_pass

remote_machine.python_path = remote_python_path

remote_service.machine_list = [remote_machine]

experiment.config.training_service = remote_service

Starting NNI:

http_port = 8080

experiment.start(http_port)
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Processing event loop:

while True:

    if experiment.get_status() == 'DONE':

        break

The remote server must have the same Python environment installed as the 

Experiment host server. NNI copies the experiment information to the remote server 

and executes the Trial jobs during the experiment. Here is an example of a Trial process 

executed on a remote server:

python3 -m nni.tools.trial_tool.trial_runner --job_pid_file /tmp/nni-

experiments/5jixfy3o/envs/XfJ9j/pid

NNI provides rich explanations concerning Training Services. Please refer to the 

official documentation for more details: https://nni.readthedocs.io/.

�Shared Storage
NNI scaling we considered in the previous section has one serious drawback. Training 

Services return only Trial metrics (nni.report_intermediate_result and nni.report_

final_result) to Experiment host server. All Trial logs are stored on the machine they 

are executed as shown in Figure 7-8.

Figure 7-8.  Local logging
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This is not convenient because the logs are located in different places.

To solve this problem, NNI provides a Shared Storage implementation that allows 

you to store all Trial logs in one place, accessible to the NNI Experiment. Figure 7-9 

depicts architecture of NNI Experiment with Shared Storage.

Figure 7-9.  Shared Storage

There are two ways to implement Shared Storage in Experiment: NFS and Azure 

Blob. Here is a sample configuration for NFS Shared Storage:

# Experiment Configuration

...

# Training Service Configuration

...

# Shared Storage Configuration

sharedStorage:

    storageType: NFS

    localMountPoint: ${your/local/mount/point}

    remoteMountPoint: ${your/remote/mount/point}

    nfsServer: ${nfs-server-ip}

    exportedDirectory: ${nfs/exported/directory}

    localMounted: nnimount

    # Values for localMounted:
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    # �usermount: means you have already mount this storage on 

localMountPoint

    # nnimount: means nni will try to mount this storage on localMountPoint

    # �nomount: means storage will not mount in local machine, will support 

partial storages in the future

Please refer to the official documentation for more details concerning Shared Storage 

implementation: https://nni.readthedocs.io/.

�One-Shot NAS with Checkpoints and TensorBoard
All of the patterns we have studied in this chapter are suitable for HPO and Multi-trial 

NAS, but they are useless for One-shot NAS. Indeed, One-shot NAS is an exceptional 

case, and it has the following limitations:

•	 Cannot be stopped and resumed

•	 Does not have a visualization of the training process

•	 Cannot be restored after an error occurs

•	 Cannot be transferred to another server

These are pretty serious limitations, making working with such an effective method 

much more difficult. Let’s try to eliminate all these limitations on the example of PyTorch 

LeNet Supernet (ch7/one_shot_nas/pt_lenet.py) and DartsTrainer implementation.

DartsTrainer accepts a user-defined method that calculates Supernet accuracy 

during the training process. To visualize the training process, we can use tensorboard 

logging with SummaryWriter that logs each training iteration’s accuracy. Listing 7-2 

demonstrates how to visualize training progress.

(Full code is provided in the corresponding file: ch7/one_shot_nas/pt_utils.py.)

Listing 7-2.  Injecting TensorBoard logging in accuracy method

from torch.utils.tensorboard import SummaryWriter

Initializing SummaryWriter:

cd = os.path.dirname(os.path.abspath(__file__))

dt = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
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tb_summary = SummaryWriter(f'{cd}/runs/{dt}')

iter_counter = 0

Method that calculates Supernet accuracy for DartsTrainer:

def accuracy(output, target, topk = (1,)):

    global iter_counter

...

Calculating results:

    res = dict()

    for k in topk:

        correct_k = correct[:k].reshape(-1).float().sum(0)

        accuracy = correct_k.mul_(1.0 / batch_size).item()

Passing accuracy to TensorBoard logs:

        tb_summary.add_scalar('darts_lenet', accuracy, iter_counter)

        iter_counter += 1

        res["acc{}".format(k)] = accuracy

    return res

Injecting TensorBoard logging in accuracy method allows visualizing Supernet 

training progress. But the main problem is that the One-shot NAS process is very fragile. 

If the server crashes or an OutOfMemory error occurs, the One-shot NAS process will be 

stopped without the possibility of resuming. This is a very serious risk of losing valuable 

results and time. Let’s try to solve this problem. We need to mention that One-shot NAS 

training uses a training loop like most neural networks. The One-shot NAS algorithm 

takes specific actions to converge to the optimal subnet during each training epoch. 

When we run the trainer fit method, we run the training loop. But this training loop can 

be run several times, and each time a new training loop will train the Supernet model 

from DartsTrainer. So we can split one fit method with num_epochs = 50 into five fit 

methods with num_epochs = 10. Figure 7-10 illustrates this concept.
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Figure 7-10.  Shared Storage

And what we can do is dump a binary image of DartsTrainer between training 

subcycles creating checkpoints, as shown in Figure 7-11.
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Figure 7-11.  One-shot NAS with checkpoints

This trick allows us to solve all main problems concerning the One-shot NAS 

process:

•	 Process can be resumed if machine crashes.

•	 Process can be stopped manually and resumed after.

•	 Checkpoint can be moved to another machine and resumed there.

Listing 7-3 demonstrates how One-shot NAS process with checkpoint dumping can 

be implemented.

We are using pickle to dump trainer binary image (please install this package if 

necessary):
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Listing 7-3.  One-shot NAS with checkpoints. ch7/one_shot_nas/darts_train_

with_checkpoint.py

import pickle

Importing other modules:

import os

from os.path import exists

import torch

import torch.nn as nn

import ch7.datasets as datasets

from nni.retiarii.oneshot.pytorch import DartsTrainer

from ch7.one_shot_nas.pt_lenet import PtLeNetSupernet

from ch7.one_shot_nas.pt_utils import accuracy

Specifying trainer checkpoint path:

cd = os.path.dirname(os.path.abspath(__file__))

trainer_checkpoint_path = f'{cd}/darts_trainer_checkpoint.bin'

Following method created DartsTrainer for LeNet Supernet:

def get_darts_trainer():

    # Supernet

    model = PtLeNetSupernet()

    # Dataset

    dataset_train, dataset_valid = datasets.get_dataset("mnist")

    # Loss Function

    criterion = nn.CrossEntropyLoss()

    # Optimizer

    optim = torch.optim.SGD(

        model.parameters(), 0.025,

        momentum = 0.9, weight_decay = 3.0E-4

    )

    # Trainer params

    num_epochs = 0
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    batch_size = 256

    metrics = accuracy

    # DARTS Trainer

    darts_trainer = DartsTrainer(

        model = model,

        loss = criterion,

        metrics = metrics,

        optimizer = optim,

        num_epochs = num_epochs,

        dataset = dataset_train,

        batch_size = batch_size,

        log_frequency = 10,

        unrolled = False

    )

    return darts_trainer

The following method trains Supernet for specified number of epochs and dumps 

trainer:

def train_and_dump(darts_trainer, epochs):

    """

    Trains Supernet according to DARTS algorithm

    """

    darts_trainer.num_epochs = epochs

    darts_trainer.fit()

    with open(trainer_checkpoint_path, 'wb') as f:

        pickle.dump(darts_trainer, f)

    return darts_trainer

And here is the main script that loads the trainer from binary checkpoint if necessary 

and splits the whole training loop into multiple subcycles:

if __name__ == '__main__':

    if exists(trainer_checkpoint_path):
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        with open(trainer_checkpoint_path, 'rb') as f:

            trainer = pickle.load(f)

    else:

        trainer = get_darts_trainer()

    for _ in range(10):

        trainer = train_and_dump(trainer, epochs = 5)

    print(f'Best model: {trainer.export()}')

Now let’s run the script (ch7/one_shot_nas/darts_train_with_checkpoint.py) we 

examined in Listing 7-3. We can visualize One-shot NAS process with TensorBoard:

tensorboard --logdir=ch7/one_shot_nas/runs/

And now, we can monitor Supernet training progress using the following link: 

http://localhost:6006/#scalars. Figure 7-12 demonstrates TensorBoard web page.
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Figure 7-12.  Supernet training progress

But the most important thing is that you can stop the execution of ch7/one_shot_

nas/darts_train_with_checkpoint.py script and then run it again. DartsTrainer will be 

restored from the binary checkpoint file ch7/one_shot_nas/darts_trainer_checkpoint.

bin and continue Supernet training. Figure 7-13 shows that DartsTrainer continues 

training from the checkpoint, not from scratch.
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Figure 7-13.  One-shot NAS training resume

This technique allows the implementation of really long-term One-shot NAS 

Experiments without fear that the Experiment or the server will crash. You can also stop 

and resume Experiment at any convenient time.

�Summary
This chapter examined several tricks and patterns that can facilitate your user 

experience. NNI is an open source developer-friendly framework, so you can implement 

your own ideas and approaches in your research and experiments. In this chapter, we 

complete the book. I hope that you now can appreciate the effectiveness of using the 

NNI framework, and it can become an indispensable tool for your daily research activity.
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